• Title/Summary/Keyword: Surface Run-off

Search Result 55, Processing Time 0.021 seconds

Flood Hazard Management Using Mobile GIS (모바일 GIS에 의한 홍수재해관리)

  • 강택순;강성봉;손홍규;유환희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.297-302
    • /
    • 2003
  • Recently, Flood hazard has been increased frequently in urban area by rainfall and Typhoon. To manage flood hazard effectively, it needs to construction of flood information management system. Especially, run-off by flood in urban area must be considered not only surface outflow by topographic gradient and elevation but also conduits outflow along conduit network. This paper suggests the flood hazard management system for analyzing flood outflow in urban area using conduits outflow simulation by ILLUDAS model and providing quickly flood hazard information using WebGIS and MobileGIS.

  • PDF

Effects of Cattle Slurry Application According to the Slopes on Forage Yield and Nutrient Runoff in Mixed Grassland (경사지에 따른 우분 액비의 시용이 목초의 생산성 및 양분의 유실에 미치는 영향)

  • Jung, Min-Woong;Choi, Ki-Choon;Yoon, Chang;Kim, Won-Ho;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • This study was conducted to investigate the effects of the degree of slope according to cattle slurry (CS) application on productivity of herbage yield and nutrients runoff in mixed grassland. silage corn and environmental pollution in silage corn cultivation soil. Field study was conducted on the steel-made erosion apparatuses which consisted of various degree of slope, such as 0%, 8.75% and 17.50%, Dry matter yield and N yield of forages decreased as the degree of the slope increased, whereas N contents increased as the degree of slope increased. $NO_3-N$ and $PO_4-P$ concentrations from the surface run-off significantly elevated by increasing the slope during the experimental period (P<0.05). However, $NO_3-N$ and $PO_4-P$ concentrations $PO_4-P$ content from the surface run-off by application of CS maintained a low levels during the experimental period. In conclusion, com productivity and nutrient losses from run-off are significantly affected by heavy rainfall on the sloping land. The results of this study suggest that CS application in the sloping land can be an important source of pollution for surface water if intensity rainfall takes place within a short period.

A Study on the Estimation of the Unit Load by the Outflow Characteristics of Suspended Solids in the Upstream Watershed of So-yang Lake (소양호 상류유역의 부유물질 유출특성에 의한 원단위 산정에 관한 연구)

  • Choi, Han-Kuy;Choi, Soon-Kuy;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.53-61
    • /
    • 2006
  • In this research, we have selected the regions of Naerin river and Inbuk river where agricultural activities are actively carried out in the upper Soyang Reservoir and we have observed the changes of water quality while raining after finding out the characteristics of the outflow of floating materials by measuring the water quantity and water quality in division of rainy season and non-rainy season for those floating materials of generating pollutions of turbidity and malnutrition of the water for 4 year from 2002 to 2005. Results of the observation showed that the outflow of floating materials is significantly affected by the surface outflow of rain water, in particular, the surface outflow was great in June -August period of flood seasons.

  • PDF

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

A Study on the Rainwater Quality Monitoring and the Improvement, Collection and Storage System (빗물 집수 및 저장 시스템 개선과 수질 분석 모니터링)

  • Kim, Chul-Kyung
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.353-362
    • /
    • 2011
  • In our nature, the utilization of rainwater is essential for healthy water recirculation. This is one of the solutions of the increment of impermeability surface according to the development of new cities; this study of the improvement of rainwater quality has been carried on through the improvement of collecting and restoring system of rainwater. The southwestern region of Daejeon City, the rainwater coefficient of run off was 0.40 and this number had computed to 0.59 after the development. After filtration of rainwater, the heavy metal (Cu, As, Cr, Fe, Mn) contents level were lower than underground water. Moreover, collected rainwater showed better quality than underground water in following criteria; hardness, permanganate consumption quality, chloride, evaporation residue, sulfates and nitrate nitrogen. This water quality met the gray water quality standards. The rainwater quality was still suitable to use as bathroom flushing and gardening after 100 days of storage. This study proved that modification (installation of cover with gutter to existing rainwater collection system, proper filtering, and installation of underground storage tank) of collection system could improve quality of water and maintain this approximately 100 days.

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Fundamental researches on the storage function model and It's application (저유함수법과 그 응용에 관한 기초적 연구)

  • 남궁달
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.90-98
    • /
    • 1984
  • In this paper, the anthor made a basic study of the storage function model and examined several constants in applying the storage function model to flood run-off analysis by dealing with the data in the Supyung and Hoyng Syung watershed, the applicabilities of the storage function model are examined by searching this optimum model parameters in two watersheds. The results are summarized as follows, 1) The optimum values of the exponential constants, P, in the storage function model showed to be 0.77 to 0.87 in two watersheds observed, therefore it was confirmed that the storage fumction model was approaching to the surface runoff model. 2) It was confirmed that the interval of variation of the storage constant, K, Showed to be larger than that of the exponential constant, p. 3) Relative erros in the discharge obtained by using the storage function model and the SDFP mothod showed to be 20 and 17 percent respectively to the observed discharge, therefore it was confirmed that the applicability of the storage function model using the SDFP method are excellent for runoff analysis. 4) A simple method is proposed for estimating the lag time in the storage function model.

  • PDF

Behavior of Pesticides in Soil (토양 중 농약의 동태)

  • Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.303-307
    • /
    • 2010
  • The researches with pesticides in soil were divided several categories such as run off from soil surface, adsorption and desorption in soil, leaching through soil, degradation and decomposition studies, fates in soil, monitoring survey and development of analytical procedures and so on. In this paper it was reviewed that the research results published in Korean journals since 1996, in connection with the former review as 'Evaluation on the effects of pesticide residues to agroecosystem in Korea'.

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.