• Title/Summary/Keyword: Surface Roughness Parameters

Search Result 588, Processing Time 0.026 seconds

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness (LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구)

  • Woo, Jeongmin;Kim, Ji-Yoon;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method (다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.

Optimization of Surface Roughness of STS 304 in a Turning Process (STS304합금의 선삭가공에서 표면거칠기의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method (다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

Relation between Radar Backscattering Coefficients and Surface Profile Length for Bare Soil Surfaces Using Theoretical Predictions and Measurement Data (토양 표면에서의 레이더 산란 계수와 표면 거칠기 측정 길이의 관계에 대한 이론 모델과 측정 데이터의 비교)

  • Oh, Yi-Sok;Hong, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1181-1188
    • /
    • 2006
  • The radar backscattering coefficients of soil surfaces with various roughness conditions are computed at first in this paper. The roughness parameters for various surface-profile lengths are also obtained. Then, the relationship between the radar backscattering coefficients and the profile length is studied. It was shown that the effect of the profile length is negligible on the backscattering coefficient, even though the roughness parameters vary a lot with the length of the surface profile.

Effect of Process Parameters on Surface Roughness in Lapping Operation (래핑의 공정변수가 표면거칠기에 미치는 영향)

  • Choi, Mansung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • Lapping is a very complicated and random process resulting from the variation of abrasive grains in its sizes and shapes and from the numerous factors having an effect on the process quality. This paper presents a study of a $2^4$ full factorial experimental design and analysis to optimize surface quality in lapping operation. The optimization of the factors to obtain minimum surface roughness was carried out by incorporating effect plots, main effect plots, interaction plots, analysis of variance(ANOVA), surface plots, and contour plots. The statistical design experiments, designed to reduce the total number of experiments required, indicated that, within the selected conditions, all the parameters influenced at a significance level of 5%. In addition, some of the possible interactions between these parameters also influenced the lapping process, especially those that were of third order. A regression model was suggested and fitted the experimental data very well.

Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603 (UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.

Analysis of the Influence of Electrical Discharge Machining Parameters on Surface Roughness of CK45

  • Abedi, Esmail;Daneshmand, Saeed;Karimi, Iman;Neyestanak, A. A. Lotfi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.131-138
    • /
    • 2015
  • Electrical discharge machining is an unconventional machining process in which successive sparks applied to machine the electrically conductive materials. Any changes in electrical discharge machining parameters lead to the pieces with distinct surface roughness. The electrical discharge machining process is well applied for high hardness materials or when it is difficult to use traditional techniques to do material removing. Furthermore, this method is widely applied in industries such as aerospace, automobile, molding, and tool making. CK45 is one of the important steels in industrial and electrical discharge machining can be considered as a proper way for its machining because of high hardness of CK45 after thermal operation of the electrical discharge machining process. Optimization of surface roughness as an output parameters as well as electrical discharge machining parameters including current, voltage and frequency for electrical discharge machining of CK45 has been studied using copper tools and kerosene as the dielectric. For such a purpose and to achieve the precise statistical analysis of the experiment results design of experiment was applied while non linear regression method was chosen to assess the response of surface roughness. Then, the results were analyzed by means of ANOVA method and machining parameters with more effects on the desired outputs were determined. Finally, mathematical model obtained for surface roughness.

Improvement of the Surface Roughness of a 3D Stereolithographic Part for a Molded Interconnect Device

  • Jeong Beom Ko;Hyeon Beom Kim;Young Jin Yang
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.211-219
    • /
    • 2024
  • 3D printing technology has created a paradigm shift in industries by achieving breakthrough innovations and enabling the fabrication of complex products. However, 3D printed parts are inferior in terms of their strength and surface quality compared to parts fabricated by conventional manufacturing methods. This study aims to improve the surface roughness of stereolithographic parts by experimental analysis of the generated area error. A photocurable polymer material was used for fabrication, and the effect of important parameters, such as the material viscosity, printing speed, pneumatic pressure, UV intensity, and pattern spacing, on the surface roughness were analyzed. The results showed that a high-viscosity (12,000 cP) thixotropic material formed a constant pattern with an aspect ratio of 1:1, and the pattern shape was maintained after printing. A pattern with a minimum thickness of 145 ㎛ was formed at a printing speed of 70 mm/s and a pneumatic pressure of 20 kPa. These parameters were found to be suitable for low surface roughness. A UV laser at an intensity of 10 ~ 30 mW/cm2 was used to form a smooth surface at low curing intensities. Moreover, it was seen that with a pattern spacing of 110 ~ 130 ㎛, a stereolithographic part with a low surface roughness of Ra 1.29 ㎛ could be fabricated.

Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales

  • Belem, Tikou
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.515-530
    • /
    • 2016
  • In this paper, five different quantitative parameters were proposed for the characterization of the primary roughness which is the component of surface morphology that prevails during large strike-slip faults of more than 50 m. These parameters are mostly the anisotropic properties of rock surface morphology at various scales: (i) coefficient ($k_a$) and degree (${\delta}_a$) of apparent structural anisotropy of surface; (ii) coefficient ($k_r$) and degree (${\delta}_r$) of real structural anisotropy of surface; (iii) surface anisotropy function P(${\varphi}$); and (iv) degree of surface waviness ($W_s$). The coefficient and degree of apparent structural anisotropy allow qualifying the anisotropy/isotropy of a discontinuity according to a classification into four classes: anisotropic, moderately anisotropic/isotropic and isotropic. The coefficient and degree of real structural anisotropy of surface captures directly the actual surface anisotropy using geostatistical method. The anisotropy function predicts directional geometric properties of a surface of discontinuity from measurements in two orthogonal directions. These predicted data may subsequently be used to highlight the anisotropy/isotropy of the surface (radar plot). The degree of surface waviness allows qualifying the undulation of anisotropic surfaces. The proposed quantitative parameters allows their application at both lab and field scales.