• 제목/요약/키워드: Surface Roughness Model

검색결과 489건 처리시간 0.024초

선삭 작업에서 표면조도와 전류소모의 모델링 및 최적화를 위한 반응표면방법론의 응용 (Application of Response Surface Methodology for Modeling and Optimization of Surface Roughness and Electric Current Consumption in Turning Operation)

  • ;오수철
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.56-68
    • /
    • 2014
  • This paper presents an experiment on the modeling, analysis, prediction and optimization of machining parameters used during the turning process of the low-carbon steel known as ST40. The parameters used to develop the model are the cutting speed, the feed rate, and the depth of the cut. The experiments were carried out under various conditions, with three level of parameters and two different treatments for each level (with and without a lubricant), to determine the effects of the parameters on the surface roughness and electric current consumption. These effects were investigated using response surface methodology (RSM). A second-order model is used to predict the values of the surface roughness and the electric current consumption from the results of experiments which collected preliminary data. The results of the experiment and the predictions of the surface roughness and electric current consumption under both treatments were found to be nearly identical. This result shows that the feed rate is the main factor that influences the surface roughness and electric current consumption.

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • 제18권2호
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

엔드밀을 이용한 기계가공에서 표면거칠기 제어를 위한 퍼지 모델 (Fuzzy Model for controlling of Surface Roughness using End-Mill in Machining)

  • 김흥배;이우영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee surface roughness regulation. This paper presents a fuzzy controller which can regulate surface roughness in milling process using end-mill under varying cutting condition. The fuzzy control rules are established from operator experience and expert knowledge about the process dynamics. regulation which increases productivity and tool life is achieved by adjusting feed-rate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted CNC milling machine. The result of experiments show that the proposed fuzzy controller has a good surface roughness regulation capability in spite of the variation of cutting conditions.

  • PDF

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid;Keblouti, Ouahid;Boulanouar, Lakhdar;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.501-513
    • /
    • 2020
  • In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

금형연마작업에서 신경망을 이용한 표면거칠기 추정 (Estimation of Surface Roughness using Neural Network in Polishing Operation of Mold and Die)

  • 조규갑;강용우
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.73-78
    • /
    • 2002
  • This paper presents a neural network approach to estimate the surface roughness by considering the relationship between the polishing operation parameters and the surface roughness. The neural network model predicts the post-machining surface roughness by using several factors such as pre-machining surface roughness, pressure, feed rate, spindle speed, and the number of polishing as inputs. In this paper, the several neural network models are implemented to estimate the surface roughness by using actual experimental data. The experimental results show that the neural network approach is more appropriate to represent the polishing characteristics of mold and die compared with the results obtained by the approach using exponential function.

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

강풍위해지도 개발 및 활용 방안에 관한 연구 (A Study on Development and Utilization of Wind Hazard Maps)

  • 이영규;이승수;함희정
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.1-8
    • /
    • 2011
  • 본 연구에서는 지리정보기반의 강풍위해지도를 개발하였으며, 이는 지표조도모형, 지형할증모형, 균일강풍지도로 구성된다. 지표조도모형은 지표조도가 지표풍에 미치는 영향을 반영하기 위해서 개발되었다. 지형에 의한 풍속할증을 반영하기 위하여 지형 할증모형을 개발하였다. 지형에 의한 풍속할증은 건축구조설계기준(2005)을 채용하여 산정하였다. 균일강풍지도는 기상자료를 이용한 빈도분석법과 태풍 시뮬레이션을 통하여 개발되었다. 본 연구에서 개발한 강풍위해성 평가방법을 통한 강풍위해지도가 강풍에 의한 손실, 피해 및 보험료율 산정에 적용될 수 있음을 보였다.

표면 조도와 곡률 반경에 대한 U-자관 압력 손실의 상관관계 (THE CORRELATION OF PRESSURE DROP FOR SURFACE ROUGHNESS AND CURVATURE RADIUS IN A U-TUBE)

  • 박정후;장세명;이신영;장강원
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.39-46
    • /
    • 2015
  • In this research, we studied the pressure drop affecting on the internal surface roughness and the curvature radius of a U-tube, which is used for the cooling system in PWR(Pressurized Water Reactor). Using ANSYS-FLUENT, a commercial code based on CFD(Computational Fluid Dynamics) technique, we compared a Moody chart with the Darcy friction factor changed by a range of various surface roughness and Reynolds numbers of a straight pipe model. We studied the effect giving variation about a range of various surface roughness and the curvature radius of the full scale U-tube model. The material of the heat transfer tube is Inconel 690 used in the steam generator. We compared the velocity distribution of selected 4 locations, and derived the correlation between the surface roughness and the pressure drop for the U-tube of each representative curvature radius using the linear regression method.

정면밀링커터의 최적설계에 대한 연구 (2) -공구수명 및 표면조도 중심으로- (A Study on Optimal Design of Face Milling Cutter Geometry(II) -With Respect to Toll Life and Surface Roughness-)

  • 김정현;김희술
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2225-2233
    • /
    • 1994
  • In order to improve the cutting ability of face mill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force model and optimal technique. Wear test and surface roughness test for optimized and conventional cutter were performed. The new optimized cutter shows longer tool life of 2.29 times than conventional cutter in light cutting condition and 2.52 times in heavy cutting condition. The surface roughness of workpiece by optimized cutter is improved in heavy cutting condition, but deteriorated in light cutting condition in comparison with conventional cutter. The surface profiles of workpiece were analyzed by Fourier transformation. The distribution of cut lay left on workpiece by optimized cutter is more regular than that by the conventional cutter.

열유체 윤활해석에 의한 표면 거칠기가 마찰거동에 미치는 영향 고찰 (The Influence of Surface Roughness on Thermohydrodynamic Analysis)

  • 김준현;김성걸;김주현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.299-304
    • /
    • 2001
  • An approach is developed for parametric investigation of the influence of the surface roughness on thermohydrodynamic analysis with film conditions which systemically occur in journal bearings. A parametric investigation is performed for predicting the bearing behaviors such as pressure and temperature distributions in lubricating films between the stationary and moving surfaces determined by absorbed layers and interfaces on the statistical method for rough surface with Gaussian distribution. The layers expressing the effects of surface roughness are expressed as functions of the standard deviations (${\sigma}$) of each surface and surface orientation (j) to explain the flow patterns between both rough surfaces. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found by solving the present model in non-contact mode and contact mode, respectively.

  • PDF