Browse > Article
http://dx.doi.org/10.9798/KOSHAM.2011.11.3.001

A Study on Development and Utilization of Wind Hazard Maps  

Lee, Young-Kyu ((주)큐버솔루션 방재기술혁신팀)
Lee, Sung-Su (충북대학교 토목공학부)
Ham, Hee-Jung (강원대학교 건축공학과)
Publication Information
Abstract
In this study, a wind hazard map over Korea peninsula based on geographical information is developed, which consists of the surface roughness model, the topographical effect model and the homogeneous wind model. The surface roughness model is assessed to evaluate the effect of the surface roughness on the wind field near ground. The topographical effect model is assessed to quantify the effect of the speed-up caused by topology, which is calculated by adopting the topographical effect factor in Korea building code (2005). The homogeneous wind map is created either by a frequency analysis method for meteorological data or a typhoon simulation. The results show that the wind hazard map can be applied to the determination of insurance premium as well as the assessment of loss and damage.
Keywords
surface roughness model; topographical effect model; homogeneous wind model; frequency analysis; typhoon simulation; wind assessment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sacre, C. (1973) Influence d'une colline sur la vitesse du vent dans la couche limite de surface, Centre Scientifique et Technique du Batiment, Nantes, France.
2 Simiu, E. and Scanlan, R.H. (1996) Wind Effects on Structures Third Edition, John Wiley & Sons, New York, USA.
3 Standard Australia (2002), AS NZS 1170.2-2002 Structural design actions-Wind actions, Austrailia.
4 Vickery, P.J., Skerlj, P.F., Steckley, A.C. and Twinsdale, L.A. (2000a) Hurricane Wind Field Model for Use in Hurricane Simulations, Journal of Structural Engineering, Vol. 126, No. 10, pp. 1203-1221.   DOI   ScienceOn
5 Vickery, P.J., Skerlj, P.F. and Twinsdale, L.A. (2000b) Simulation of Hurricane Risk in the United States Using Empirical Track Model, Journal of Structural Engineering, Vol. 126, No. 10, pp. 1222-1237.   DOI   ScienceOn
6 Wieringa, J. (1992) Updating the Davenport Roughness Classification, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41, No. 1/3, pp. 357-368.   DOI   ScienceOn
7 Wieringa, J. (1993) Representative Roughness Parameters for Homogeneous Terrain, Boundary-Layer Meteorology, Vol. 63, No. 4, pp. 323-363.   DOI   ScienceOn
8 Yohana, M. and Lee, S. (2009), Topographical Factors for Wind Speed in Undulating Terrain: A Case Study for Korean Peninsula, Journal of the Wind Engineering Institute of Korea, Vol. 13, No.2, pp. 67-73.
9 농촌진흥청 (2008) 비닐하우스 지역별 내재해형 규격 기준.
10 대한건축학회 (2000) 건축물 하중 기준 및 해설.
11 대한건축학회 (2005) 건축구조설계기준.
12 소방방재청 (2009) 강풍 및 대설 위험도 산정 기법 개발, 자연재해저감기술개발.
13 엄정아, 이승수, 이영규 (2010) NDVI를 이용한 지표조도 추정, 제6회 한국유체공학학술대회, pp. 629-630.
14 이영규 (2010) 지리정보기반 강풍위해성 평가 모형 개발, 박사학위논문, 충북대학교.
15 하영철, 이승수, 김규석 (1998) 건축물 설계용 기본풍속분포도, 대한건축학회논문집 구조계, 대한건축학회, 제14권, 제8호, pp. 75-83.
16 이영규, 이승수 (2008) 한반도 근역 태풍에 의한 지표풍 추정, 한국풍공학회지, 한국풍공학회, 제12권, 제2호, pp. 121-128.
17 American Society of Civil Engineers (2005) ASCE/SEI 7-05, Minimum Design Loads for Buildings and Other Structures, New York, United States of America.
18 Bowen, A.J. and D. Lindley (1977) A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes, Boundary Layer Meteorology, Vol. 12, pp. 259-271.   DOI   ScienceOn
19 De Bray, B.G. (1973) Atmospheric Shear Flows over Ramps and Escarpments, Industrial Aerodynamics Abstracts, Vol. 5, pp. 1- 4.
20 Ramli, N.I., Ali, M.I., Saad, M.S.H. and Majid, T.A. (2009) Estimation or the roughness length(z0) in Malaysia using satellite image, The Seventh Asia-Pacific conference on Wind Engineering, November 8-12, 2009, pp. 641-634.