• Title/Summary/Keyword: Surface Robot

Search Result 425, Processing Time 0.026 seconds

A Study on the Endmilling using the Multi-Articulated Robot (다관절 로봇을 이용한 엔드밀 가공에 관한 연구)

  • 최은환;정선환;최성대
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1772-1775
    • /
    • 2003
  • The stiffness of multi-articulated industrial robots is very weak, because their structure is an articulated type with some links and joints. Thus it is known that cutting processes for metals are not accepted in machine shop well, but they have a lot of merits for cutting processes, for example. drilling, tapping. and engraving etc., because of the characteristics of their high degree of freedom. The temptation of cutting aluminium was carried out to investigate the feasibility and the limitations or constrains for cutting metals on them. First the mode shapes of 6-axes FANUC welding robot were taken and analysed, and next the cutting processes were practically carried out on it. The results of study were found out to show the feasibility of cutting processes at end-milling under 6mm of tool diameter. as well as to have some limitations and constrains, for examples, surface roughness and feed rate, depth of cut, cutting force etc..

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

The Collision Avoidance Method in the Chaotic Robot with Hyperchaos Path

  • Youngchul Bae;Kim, Juwan;Park, Namsup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.584-588
    • /
    • 2003
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a Hyperchaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a hyper-chaos equation trajectory, the obstacle reflects the robot. We also show computer simulation result of hyperchaos equation trajectories with one or more Van der Pol obstacles.

  • PDF

Obstacle Avoidance Methods in the Chaotic Mobile Robot with Integrated some Chaos Equation

  • Bae, Young-Chul;Kim, Ju-Wan;Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.206-214
    • /
    • 2003
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in an Arnold equation or Chua's equation trajectory, the obstacle reflects the robot. We also show computer simulation results of Arnold equation and Chua's equation and random walk chaos trajectories with one or more Van der Pol obstacles and compare the coverage rates of each trajectory. We show that the Chua's equation is slightly more efficient in coverage rates when two robots are used, and the optimal number of robots in either the Arnold equation or the Chua's equation is also examined.

A Study on the Surface Roughness Behavior of Reactor Vessel Stud Holes in APR1400 Nuclear Power Plants (APR1400 원자로 용기 스터드 홀의 표면거칠기 거동에 관한 연구)

  • Kim, Dong Il;Kim, Chang Hun;Moon, Young Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.62-70
    • /
    • 2019
  • The APR1400 reactor may be operated for a long time under high temperature and pressure conditions, causing damage to the stud holes and causing stud bolts and holes to stick. The present practice is to manually remove the anti-sticking agent and foreign matter remaining in the APR1400 reactor stud hole and to visually check the surface condition of the thread to check the damage status of the threads. In the case of the APR1400 reactor stud holes, manually cleaning the threads increases the risk of radiation exposure and operator's fatigue. To avoid this, the autonomous mobile robot is used to automatically clean the reactor stud holes. The purpose of this study is to optimize the cleaning performance of the mobile robot by looking at the behavior of the surface roughness of the stud surface cleaned by the brush attached to the mobile robot due to changes in brush material, thickness of wire, and rotation speed. A microscopic approach to the surface roughness of the flank is needed to investigate the effects of the newly proposed brush of the autonomous mobile robot on the thread holes. According to this experiment, it is reasonable to use STS brush rather than Carbon one. Optimal operating conditions are derived and the safety of APR1400 reactor stud holes maintenance can be improved.

Robust Velocity Estimation of an Omnidirectional Mobile Robot Using a Polygonal Array of Optical Mice

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.713-721
    • /
    • 2008
  • This paper presents the robust velocity estimation of an omnidirectional mobile robot using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. The least squares velocity estimate of a mobile robot is then obtained, which becomes the same as the simple average for a regular polygonal arrangement of optical mice. Next, several practical issues that need be addressed for the use of the least squares mobile robot velocity estimation using optical mice are investigated, which include measurement noises, partial malfunctions, and imperfect installation. Finally, experimental results with different number of optical mice and under different floor surface conditions are given to demonstrate the validity and performance of the proposed least squares mobile robot velocity estimation method.

A Study on Dynamic Stiffness of Inspection Robot Frame Considering Sub-span Oscillation (서브스판 진동을 고려한 송전선로 검사로봇 프레임 구조 설계에 관한 연구)

  • Kim, Moon Young;Lee, Jun Young;Lee, Taikjin;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.827-829
    • /
    • 2014
  • This paper presents a design methodology for improving dynamic stiffness of an inspection robot frame to prevent resonance. Finite element models of robot frame are developed for natural frequency analysis. Natural frequency analysis of robot frame is conducted to compare with sub-span oscillation which is excitation frequency. Reinforcement beams are applied to the sensitive parts of the robot frame to improve dynamic stiffness using case study. To reduce mass of the robot frame, thickness optimization of the robot frame is carried out by utilizing response surface method. The result of optimization show that dynamic stiffness of robot frame is increased. As a result, natural frequency of an optimal model is not included in range of frequencies of the sub-span oscillation.

  • PDF

Robot Target Tracking Method using a Structured Laser Beam (레이저 구조광을 이용한 로봇 목표 추적 방법)

  • Kim, Jong Hyeong;Koh, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.

A Study on the Development of Mobile Robot for Inspection of Hull Surface (선체 외부 검사용 모바일 로봇 개발에 관한 연구)

  • Kim, Jin-Man;Kim, Heon-Hui;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • In this paper, development of mobile robot for the inspection of hull surface was mentioned. In the sea, it is difficult to proceed with the visual inspection of hull side and thus mobile robot for checking the status could be run with strap-on its surface. To do this, permanent magnet module to generate magnetic force between hull surface and mobile robot, and structure to minimize variance of the force under curvature circumstance were considered on the design. Based on the design, mobile robot with four NdFeB, four driving wheels and image aquisition module was applied. Load experiment to check the adhesive force, slip test during stop state and driving test to measure driving speed were executed. From the experiments 13 Kgf adhesive force was obtained and slip was not happened until 8 Kgf load on the inclined plate. Driving speed of mobile robot was measured at 0.82 m/s corresponding to 6.5 ampere. We confirmed the effectiveness of developed mobile robot by experiments to check its characteristics.

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF