• Title/Summary/Keyword: Surface Reflectance

Search Result 611, Processing Time 0.031 seconds

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Particulate Organic Carbon (POC) Algorithms for the southwestern part of the East Sea during spring-summer period using MODIS Aqua (MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선)

  • Hong, Gi-Hoon;Ahn, Yu-Hwan;Son, Young-Baek;Ryu, Joo-Hyung;Kim, Chang-Joon;Yang, Dong-Beom;Kim, Young-Il;Chung, Chang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.

Illuminant Color Estimation Method Using Valuable Pixels (중요 화소들을 이용한 광원의 색 추정 방법)

  • Kim, Young-Woo;Lee, Moon-Hyun;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2013
  • It is a challenging problem to most of the image processing when the light source is unknown. The color of the light source must be estimated in order to compensate color changes. To estimate the color of the light source, additional assumption is need, so that we assumed color distribution according to the light source. If the pixels, which do not satisfy the assumption, are used, the estimation fails to provide an accurate result. The most popular color distribution assumption is Grey-World Assumption (GWA); it is the assumption that the color in each scene, the surface reflectance averages to gray or achromatic color over the entire images. In this paper, we analyze the characteristics of the camera response function, and the effect of the Grey-World Assumption on the pixel value and chromaticity, based on the inherent characteristics of the light source. Besides, we propose a novel method that detects important pixels for the color estimation of the light source. In our method, we firstly proposed a method that gives weights to pixels satisfying the assumption. Then, we proposed a pixel detection method, which we modified max-RGB method, to apply on the weighted pixels. Maximum weighted pixels in the column direction and row direction in one channel are detected. The performance of our method is verified through demonstrations in several real scenes. Proposed method better accurately estimate the color of the light than previous methods.

Fabrication and Optical Property of ZnO/SiO2 Branch Hierarchical Nanostructures (ZnO/SiO2 가지형 나노계층구조의 제작 및 광학적 특성 연구)

  • Ko, Y.H.;Kim, M.S.;Yu, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.381-386
    • /
    • 2011
  • We fabricated the ZnO (zinc oxide)/$SiO_2$ (silicon dioxide) branch hierarchical nanostructures by the e-beam evaporation of $SiO_2$ onto the surface of the electrochemically grown ZnO nanorods on Si substrate, which leads to the self-assembled $SiO_2$ nanorods by oblique angle deposition between vapor flux and vertically aligned ZnO nanorods. In order to investigate the effects of $SiO_2$ deposition on the morphology and optical property of ZnO/$SiO_2$ branch hierarchical nanostructures, the evaporation time of $SiO_2$ was varied under a fixed deposition rate of 0.5 nm/s. The vertically aligned ZnO nanorods on Si substrate exhibited a low reflectance of <10% in the wavelength range of 300~535 nm. For ZnO/$SiO_2$ branch hierarchical nanostructures at 100 s of evaporation time of $SiO_2$, the more improved antireflective property was achieved. From these results, ZnO/$SiO_2$ branch hierarchical nanostructures are very promising for optoelectronic and photovoltaic device applications.

Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity (란탄족 이온이 도핑된 Ti-SBA-15의 합성 및 그들의 광촉매 활성)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Ti-SBA-15 catalysts doped with lanthanide ions (Ln/Ti-SBA-15) were successfully synthesized using conventional hydrothermal method. In addition, they were characterized by XRD, FT-IR, DRS, BET, and PL. The activity of these materials on the photocatalytic decomposition of methylene blue under ultraviolet light irradiation was also examined. Ti-SBA-15 catalysts doped with various lanthanide ions maintained their mesoporous structure. The pore size and pore volume of Ln/Ti-SBA-15 materials decreased but their surface area increased upon the doping of lanthanide ion. Ln/Ti-SBA-15 materials exhibited the type IV nitrogen isotherm with desorption hysteresis loop type H2, which was characteristic of mesoporous materials. The size of hysteresis increased in the doping of lanthanide ions on Ti-SBA-15 material. There was no absorption in the visible region (> 400 nm) regardless of the doping of lanthanide ions to TiO2 particles, while the broad bands at 220 nm appeared at the Ln/Ti-SBA-15 samples, indicating the framework incorporation of titanium into SBA-15. 1 mol% Pr/ Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the Ti-SBA-15 catalysts doped with Eu, Er, and Nd ions showed lower activity compared to pure Ti-SBA-15 catalyst. The PL peaks appeared at about 410 nm at all catalysts while the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of methylene blue.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Optical properties and applications of $TiO_2$ films prepared by ion beam sputtering (이온빔 스퍼터링으로 증착한 $TiO_2$박막의 광학적 특성 및 응용)

  • 이정환;조준식;김동환;고석근
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.176-182
    • /
    • 2002
  • Amorphous $TiO_2$ thin films were deposited on glass substrates by ion beam sputtering in which the ratio of $O_2$/Ar gas used as discharged gas was varied from 0 to 2. After optical and microstructure properties and chemical composition of thin films was analyzed, antireflection coating layers were fabricated with $SiO_2$/$TiO_2$ multi-layers. Thin films deposition was performed at room temperature and ion beam voltage and ion current density for sputtering of target were fixed at 1.2 kV and 200 $\mu\textrm{A}/\textrm{cm}^2$, respectively. Refractive indexs of the deposited $TiO_2$films were 2.40-2.45 at a wavelength of 633 nm. $TiO_2$films had high transmission and stoichiometry when ratio of $O_2$/Ar was 1. Rms roughness of deposited $TiO_2$ film was below 7 $\AA$. In excessive $O_2$ environments, however Rms roughness increased over 50 $\AA$. Transmittance decreased by scattering of rough surface. Reflectance of $SiO_2$/$TiO_2$multi-layers was below 1% in visible light.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.