Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.5.381

Fabrication and Optical Property of ZnO/SiO2 Branch Hierarchical Nanostructures  

Ko, Y.H. (Department of Electronics and Radio Engineering, Kyung Hee University)
Kim, M.S. (Department of Electronics and Radio Engineering, Kyung Hee University)
Yu, J.S. (Department of Electronics and Radio Engineering, Kyung Hee University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.5, 2011 , pp. 381-386 More about this Journal
Abstract
We fabricated the ZnO (zinc oxide)/$SiO_2$ (silicon dioxide) branch hierarchical nanostructures by the e-beam evaporation of $SiO_2$ onto the surface of the electrochemically grown ZnO nanorods on Si substrate, which leads to the self-assembled $SiO_2$ nanorods by oblique angle deposition between vapor flux and vertically aligned ZnO nanorods. In order to investigate the effects of $SiO_2$ deposition on the morphology and optical property of ZnO/$SiO_2$ branch hierarchical nanostructures, the evaporation time of $SiO_2$ was varied under a fixed deposition rate of 0.5 nm/s. The vertically aligned ZnO nanorods on Si substrate exhibited a low reflectance of <10% in the wavelength range of 300~535 nm. For ZnO/$SiO_2$ branch hierarchical nanostructures at 100 s of evaporation time of $SiO_2$, the more improved antireflective property was achieved. From these results, ZnO/$SiO_2$ branch hierarchical nanostructures are very promising for optoelectronic and photovoltaic device applications.
Keywords
ZnO/$SiO_2$ branch hierarchical nanostructures; Electrochemical deposition; E-beam evaporation; Oblique angle deposition; Antireflective property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Wang, C. H. Sun, Y. Zhao, S. Zhou, P. Chena, and L. Jiang, J. Mater. Chem. 18, 3909 (2008).   DOI   ScienceOn
2 D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Roobbie, M. Seto, and T. Smy, Thin Solid Films 339, 88 (1999).   DOI
3 K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, Opt. Commun. 284, 873 (2011).   DOI
4 S. Chhajed, D. J. Poxson, X. Yan, J. H. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, Appl. Phys. Express 4, 052503 (2011).   DOI
5 Y. H. Ko, J. W. Leem, and J. S. Yu, Nanotechnology 22, 205604 (2011).   DOI
6 Z. Qifeng, S. D. Christopher, Z. Xiaoyuan, and C. Guozhong, Adv. Mater. 21, 4087 (2009).   DOI
7 S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. H. Hong, P. G. Costas, and H. J. Sung, Nano Lett. 11, 666 (2011).   DOI   ScienceOn
8 J. D. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. H. Park, J. H. Lee, J. S. Yi, and C. S. Han, Nanotechnology 21, 115205 (2010).   DOI
9 J. Bao, M. A. Zimmler, and F. Capasso, Nano Lett. 6, 1719 (2006).   DOI
10 G. Chaia, O. Lupanb, L. Chow, and H. Heinrich, Sensor and Actuator A: Physical 150, 184 (2009).   DOI
11 S. D. Lee, Y. S. Kim, M. S. Yi, J. Y. Choi, and S. W. Kim, J. Phys. Chem. C 113, 8954 (2009).   DOI
12 G. Shen, Y. Bando, C. Tang, and D. Golberg, J. Phys. Chem. B 110, 7199 (2006).   DOI
13 Y. Yan, L. Zhou, L. Yu, and Y. Zhang, Appl. Phys. A 93, 457 (2008).   DOI