• Title/Summary/Keyword: Surface Quality

Search Result 5,157, Processing Time 0.032 seconds

Fractal dimension analysis of machined surface according to machining progress (가공의 진전에 따른 표면의 프랙탈 차원 해석)

  • 최임수;이기용;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.251-254
    • /
    • 1995
  • The quality and functionality of machined products is determined by surface finish. The surface roughness is characterized by roughness parameters such as R $_{a}$ and R $_{max}$. While such parameters are useful to define the quality of surface, they are nor sufficiently descriptive characteristics of surface. The fractal dimension which can describe characteristics od surface roughness than conventional roughness parameters has been applied. In this work, Relation between fractal dimension and surface roughness will be examined as a means of characterizing surface roughness.s.s.

  • PDF

The Characteristics of Seasonal Variations of Water Quality in Mokpo Harbour 1. Physical Environment and Organic Pollution (목포항 수질의 계절적 변화 특성 I. 물리 환경과 유기 오염)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.57-65
    • /
    • 1999
  • The in situ observations and the seawater analyses were conducted at all seasons from July 1996 to April 1999 for the purpose of describing the characteristics of seasonal variations of water quality in Mokpo harbour, Korea. Vertical stratification started to be formed in water column in spring, developed in summer and disappeared in fall. In summer, vertical density distribution of water column was found to be in stable structure with lower temperature and higher salinity of bottom water, and the vertical mixing of water between surface and bottom layers was restricted. In winter, however, surface water was found to be similar to bottom water in temperature and salinity, and water column was in unstable structure and in well-mixed condition between surface and bottom waters. The saturation percentage of dissolved oxygen(DO) in bottom water of inner part of Mokpo harbour at all seasons was shown to be decreased to the third grade or under the third grade of Korean standards of seawater quality. In particular, dissolved oxygen was oversaturated in surface water and undersaturated in bottom water in summer, due to stratification and organic pollution. The difference of DO concentration between surface and bottom waters was found to be greater in spring and summer than in fall and winter, due to stratification and photosynthesis of phytoplankton. The concentrations of chemical oxygen demand(COD) over the entire waters of Mokpo harbour were found to fluctuate from below the third grade to the first grade of Korean standards through all seasons and COD concentrations of same seasons were shown to be different year after year. In particular, in view of COD, the annual average seawater quality of Mokpo harbour was evaluated to be in third grade of Korean standards, due to organic pollution. The average COD of surface water was greater than that of bottom water in spring and summer, due to the autochthonous COD caused by production of phytoplankton in surface waters, while the average COD of surface water was similar to that of bottom water in fall and winter, due to the vertical mixing of water between surface and bottom layers.

  • PDF

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Study on Methods in Test & Evaluation of the Guided Rocket Munition (유도형 로켓탄의 시험평가 방법에 관한 연구)

  • Ahn, Mahn-Ki;Kwon, Tag-Mahn;Hwang, Un-Hee;Hwang, Woo-Yull
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1019-1025
    • /
    • 2010
  • This paper describes on methods in test and evaluation of the guided rocket munitions of the domestic new generation multiple launcher rocket system. We modified and refer to the present model of air-to-air missile(AAM) and surface-to-air missile(SAM). Also we suggested a method of surface-to-surface missile(SSM) based on the characteristics of the guided rocket in test and evaluation(T&E). According to this study, the suggested activity of T&E should be observed methods compatible with each item on the established model. Therefore, we expect that the proposed research material will be a good guide to the study of a surface-to-surface missile(SSM) installed GPS/INS integration navigation guidance & control systems in the future.

A Study on Application of Normal Oriented Path Generation Algorithm for Curved Surface Coating Process (곡면 코팅 공정을 위한 수직 지향 경로 생성 알고리즘 적용에 대한 연구)

  • Gun Ho Kim;Kihyun Kim;Jaehyun Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.119-123
    • /
    • 2023
  • This study is normal orientation technology of slit coating equipment to improve the quality of curved displays. Currently, the demand for curved displays is increasing significantly due to advantages such as screen immersion or design in various industries. Accordingly, changes in the display coating process are essential. In the curved display coating process, unlike the existing flat coating process, the nozzle must be rotated along the curvature of the curved surface to spray the coating solution. The coating solution must be applied while maintaining a uniform thickness. If the thickness of the coating liquid applied to the target surface is non-uniform, the quality of the product may be degraded such as image quality deterioration and light spreading. This paper presents technology and experimental results for keeping the nozzle of slit coating equipment perpendicular to the curved surface and is expected to contribute to the quality improvement of curved displays.

  • PDF

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

Experimental Study on the Frost Resistance of Concete Product (콘크리트제품의 동결저항성에 관한 실험적 연구)

  • Sugawara, Takashi;Tsukinaga, Yhoichi;Lee, Sanghun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.519-526
    • /
    • 2017
  • In the present paper, the effects of cutting parameters and coating material on the performances of cutting tools in turning of AISI 52100 steel are discussed experimentally. A comparative study was carried out between uncoated and coated (with TiCN-TiN coating layer) cermet tools. The substrate composition and the geometry of the inserts compared were the same. A mathematical model was developed based on the Response Surface Methodology (RSM). ANOVA method was used to quantify the effect of cutting parameters on the machining surface quality and the cutting forces. The results show that feed rate has the most effect on surface quality. However, cutting depth has the significant effect on the cutting force components. The effect of coating layers on the surface quality was also studied. A lower surface roughness was observed when using PVD (TiCN-TiN) coated insert. A second order regression model was developed and a good accuracy was obtained with correlation coefficients in the range of 95% to 97%.

Improving the Surface Roughness of SL Parts Using a Coating and Grinding Process

  • Ahn, Dae-Keon;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.14-19
    • /
    • 2007
  • Rapid prototyping (RP) technology can fabricate any 3D physical model regardless of geometric complexity using the layered manufacturing (LM) process. Stereolithography (SL) is the best-known example of RP technology. In general, the surface quality of a raw SL-generated part is unsatisfactory for industrial purposes due to the step artefact created by the LM process. Despite of the increased number of applications for SL parts, this side effect limits their uses. In order to improve their surface quality, additional post-machining finishing, such as traditional grinding, is required, but post-machining is time consuming and can reduce the geometric accuracy of a part. Therefore, this study proposes a post-machining technology combining coating and grinding processes to improve the surface quality of SL parts. Paraffin wax and pulp are used as the coating and grinding materials. By grinding the coating wax only up to the boundary of the part, the surface smoothness can be improved without damaging the surface. Finally, moulding and casting experiments were performed to confirm the suitability of the SL parts finished using the proposed process with rapid tooling (RT) techniques.

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.