• Title/Summary/Keyword: Surface Passivation

Search Result 362, Processing Time 0.027 seconds

(Substrate and pretreatment dependence of Cu nucleation by metal-organic chemical vapor deposition) (유기금속화학기상증착법에 의해 증착된 구리 핵의 기판과 전처리의 의존성)

  • Kwak, Sung-Kwan;Lee, Myoung-Jae;Kim, Dong-Sik;Kang, Chang-Soo;Chung, Kwan-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.22-30
    • /
    • 2002
  • The nucleation of copper(Cu) with (hfac)iu(VTMS) oganometallic precursor is investigated for Si, $Sio_2$, TiN, $W_2N$ substrates. As the deposition temperature is increased, the dominant growth mechanism is observed to change from the nucleation of Cu particles to the clustering of Cu nuclei around $180^{\ciec}C$, independent of the employed substrates. It is also observed that the cleaning of substrate surfaces with the diluted HF solution improves the selectivity of Cu nucleation between TiN and $Sio_2$ substrates. Dimethyldichlorosilane treatment is found to passivate the surface of TiN substrate, contrary to the generally accepted belief, when the TiN substrate is cleaned by $H_2O_2$ solution before the treatment.

A study on the characteristics of double insulating layer (HgCdTe MIS의 이중 절연막 특성에 관한 연구)

  • 정진원
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1996
  • The double insulating layer consisting of anodic oxide and ZnS was formed for HgCdTe metal insulator semiconductor(MIS) structure. ZnS was evaporated on the anodic oxide grown in H$_{2}$O$_{2}$ electrolyte. Recently, this insulating mechanism for HgCdTe MIS has been deeply studied for improving HgCdTe surface passivation. It was found through TEM observation that an interface layer is formed between ZnS and anodic oxide layers for the first time in the study of this area. EDS analysis of chemical compositions using by electron beam of 20.angs. in diameter and XPS depth composition profile indicated strongly that the new interface is composed of ZnO. Also TEM high resolution image showed that the structure of oxide layer has been changed from the amorphous state to the microsrystalline structure of 100.angs. in diameter after the evaporation of ZnS. The double insulating layer with the resistivity of 10$^{10}$ .ohm.cm was estimated to be proper insulating layer of HgCdTe MIS device. The optical reflectance of about 7% in the region of 5.mu.m showed anti-reflection effect of the insulating layer. The measured C-V curve showed the large shoft of flat band voltage due to the high density of fixed oxide charges about 1.2*10$^{12}$ /cm$^{2}$. The oxygen vacancies and possible cationic state of Zn in the anodic oxide layer are estimated to cause this high density of fixed oxide charges.

  • PDF

Titanium dioxide by spray deposition for buried contact silicon solar cells fabrication (전극함몰형 실리콘 태양전지의 제작시 스프레이 방법에 의한 타이타늄 옥사이드층의 적용에 관한 연구)

  • A.U. Ebong;S.H. Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.263-274
    • /
    • 1996
  • Titanium dioxide ($TiO_{2}$) film has been widely used as anti-reflection coating for solar cells but not as masking oxide for metallisation and diffusion of impurities. In this paper we have investigated the properties of $TiO_{2}$ for possible incorporation into solar cell processing sequence. Thus the use of a spray deposition system to form the $TiO_{2}$ film and the characterisation of this film to ascertain its suitability to solar cell processing. The spray-on $TiO_{2}$ film was found to be resistant to all the chemicals used in conjunction with solar cell processing. The high temperature anealing (in oxygen ambient) of the spray-on $TiO_{2}$ film resulted in an increased refractive index, which indicated the growth of an underlying thin film of $SiO_{2}$ film for the passivation of silicon surface which would reduce the recombination activities of the fabricated device. Most importantly, the successful incorporation of the $TiO{2}$ film will lead to the reduction of the many high temperature processing steps of solar cell to only one.

  • PDF

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

Electrical and Mechanical Properties of Cu(Mg) Film for ULSI Interconnect (고집적 반도체 배선용 Cu(Mg) 박막의 전기적, 기계적 특성 평가)

  • 안재수;안정욱;주영창;이제훈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.89-98
    • /
    • 2003
  • The electrical and mechanical properties of sputtered Cu(Mg) films are investigated for highly reliable interconnects. The roughness, adhesion, hardness and resistance to thermal stress of Cu(Mg) film annealed in vacuum at $400^{\circ}C$ for 30min were improved than those of pure Cu film. Moreover, the flat band voltage(V$_{F}$ ) shift in the Capacitance-Voltage(C-V) curve upon bias temperature stressing(BTS) was not observed and leakage currents of Cu(Mg) into $SiO_2$ were three times less than those of pure Cu. Because Mg was easy to react with oxide than Cu and Si after annealing, the Mg Oxide which formed at surface and interface served as a passivation layer as well.

  • PDF

Improvement of Polishing Characteristics Using with and without Oxidant ($H_2O_2$) of Ti/FiN Layers (산화제($H_2O_2$)의 첨가 유무에 따른 Ti/TiN막의 CMP 연마 특성)

  • Lee, Kyoung-Jin;Seo, Yong-Jin;Park, Chang-Jun;Kim, Gi-Uk;Park, Sung-Woo;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.88-91
    • /
    • 2003
  • Tungsten is widely used as a plug for the multi-level interconnection structures. However, due to the poor adhesive properties of tungsten (W) on $SiO_2$ layer, the Ti/TiN barrier layer is usually deposited onto $SiO_2$ for increasing adhesion ability with W film. Generally, for the W-CMP (chemical mechanical polishing) process, the passivation layer on the tungsten surface during CMP plays an important role. In this paper, the effect of oxidants controlling the polishing selectivity of W/Ti/TiN layer were investigated. The alumina ($Al_2O_3$) abrasive containing slurry with $H_2O_2$ as the oxidizer, was studied. As our preliminary experimental results, very low removal rates were observed for the case of no-oxidant slurry. This low removal rate is only due to the mechanical abrasive force. However, for Ti and TiN with $H_2O_2$ oxidizer, different removal rate was observed. The removal mechanism of Ti during CMP is mainly due to mechanical abrasive, whereas for TiN, it is due to the formation of metastable soluble peroxide complex.

  • PDF

Stability of Oxidizer $H_2O_2$ for Copper CMP Slurry (구리 CMP 슬러리를 위한 산화제 $H_2O_2$의 안정성)

  • Lee, Do-Won;Kim, In-Pyo;Kim, Nam-Hoon;Kim, Sang-Yong;Seo, Yong-Jin;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.382-385
    • /
    • 2003
  • Chemical mechanical polishing(CMP) is an essential process in the production of copper-based chips. On this work, the stability of Hydrogen Peroxide($H_2O_2$) as oxidizer of Cu CMP slurry has been investigated. $H_2O_2$ is known as the most common oxidizer in Cu CMP slurry. Copper slowly dissolves in $H_2O_2$ solutions and the interaction of $H_2O_2$ with copper surface had been studied in the literature. Because hydrogen peroxide is a weak acid in aqueous solutions, a passivation-type slurry chemistry could be achieved only with pH buffered solution.[1] Moreover, $H_2O_2$ is so unstable that its stabilization is needed using as oxidizer. As adding KOH as pH buffering agent, stability of $H_2O_2$ decreased. However, stability went up with putting in small amount of BTA as film forming agent. There was no difference of $H_2O_2$ stability between KOH and TMAH at same pH. On the other hand, $H_2O_2$ dispersion of TMAH is lower than that of KOH. Furthermore, adding $H_2O_2$ in slurry in advance of bead milling lead to better stability than adding after bead milling. Generally, various solutions of phosphoric acids result in a higher stability. Using Alumina C as abrasive was good at stabilizing for $H_2O_2$; moreover, better stability was gotten by adding $H_3PO_4$.

  • PDF

W Chemical Mechanical Polishing (CMP) Characteristics by oxidizer addition (산화제 첨가에 따른 W-CMP 특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.46-49
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of $Al_3O_3$ particles in presence of surfactant stabilizing the slurry.

  • PDF

Study on the Characteristics of Crevice Corrosion for STS304 Austenitic Stainless Steel(I) (오스테나이트계 스테인리스강의 틈부식 특성에 관한연구(I))

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • In these days, with development of industry, the use of machines and structures like ships, airplanes, bridges, power plants, and structure for construction has increased and these machines and structures are used in various corrosive environment. Especially, in case of STS 304, which is material for every kind of machine and chemical plant, it makes many problems related with corrosion and as a result of this, there are happening tremendous economic loss. Therefor, in this study, the test for polarization characteristics was carried out to study characteristics of crevice corrosion of STS 304 which is austenitic stainless steel, in NaCl environment.The main results obtained are as follows :1) Part of crevice is corroded, neighboring outside surface of crevice is passivation. 2) In polarization behavior, corrosion potential of STS 304 become more noble as the concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5% that of STS 3.4 become less noble. 3) The current density under corrosion potential was high drained as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, the current density was low drained.

  • PDF

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis (CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향)

  • Lee, Jae Hee;Kim, Seongbeom;Kim, Jongbok;Hwang, Taekseong;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.