• 제목/요약/키워드: Surface Oxidization

검색결과 41건 처리시간 0.021초

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

폴리카보네이트 판재의 재활용을 위한 자기연마 가공 (An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling)

  • 이용철;김광삼;곽태수;이종열
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.

몰드변압기용 에폭시 수지의 열 열화특성에 관한 연구 (A Study on the Thermal Degradation Properties of Epoxy Resin for Cast Resin Transformer)

  • 임경범;남기동;김기환;박수홍;황명환
    • 한국화재소방학회논문지
    • /
    • 제22권2호
    • /
    • pp.44-48
    • /
    • 2008
  • 본 논문은 몰드변압기용 에폭시수지의 열 열화특성을 고찰하기 위하여, 접촉각, 표면저항률 및 XPS를 측정하였다. 실험결과, 표면에서 재가교를 일으킴에 따라 접촉각은 $200^{\circ}C$까지는 증가하다가 $250^{\circ}C$에서는 열응축이 발생되어 접촉각이 감소하는 경향을 나타내었다. XPS분석을 통하여 산소/탄소 피크치를 조사한 결과, 최초 미처리의 시료에서는 탄소에 대한 산소의 피크치가 더 높게 나타났으나, 열처리 후에는 그와 반대되는 경향을 나타내었다. 이러한 탄소피크의 증가는 $200^{\circ}C$까지 나타났고 그 이상의 온도에서는 다시 감소하였다. 이것은 $200^{\circ}C$까지는 안정된 표면구조를 형성하다가 $250^{\circ}C$에서는 급격한 산화가 발생됨으로써 탄소결합이 파괴되었기 때문이다. 이는 급격한 표면활성화에 따른 친수화로 도전로가 쉽게 형성되었기 때문이다.

BIOLOGICAL RESPONSES OF OSTEOBLAST-LIKE CELLS TO DIFFERENT TITANIUM SURFACE BY ANODIZING MODIFICATION

  • Kim Myung-Joo;Kim Chang-Whe;Lim Young-Jun;Park Hyun-Joo
    • 대한치과보철학회지
    • /
    • 제43권6호
    • /
    • pp.751-763
    • /
    • 2005
  • Statement of problem. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. The surface quality of the implant depends on the chemical, physical, mechanical and topographical properties of the surface. The different properties will interact with each other and a change in thickness of the oxide layer may also result in a change in surface energy, the surface topography and surface, chemical composition. However, there is limited the comprehensive study with regard to changed surface and biologic behavior of osteoblast by anodization. Purpose of study. The aim of this study was to analyze the characteristics of an oxide layer formed and to evaluate the cellular biologic behaviors on titanium by anodic oxidation (anodization) by cellular proliferation, differentiation, ECM formation and gene expression. And the phospholipase activity was measured on the anodized surface as preliminary study to understand how surface properties of Ti implant are transduced into downstream cellular events. Methods and Materials. The surface of a commercially pure titanium(Grade 2) was modified by anodic oxidation. The group 1 samples had a machined surface and other three experimental specimens were anodized under a constant voltage of 270 V(Group 2), 350 V(Group 3), and 450 V(Group 4). The specimen characteristics were inspected using the following five categories; the surface morphology, the surface roughness, the thickness of oxide layer, the crystallinity, and the chemical composition of the oxide layer. Cell numbers were taken as a marker for cell proliferation. While the expression of alkaline phosphatase and Runx2 (Cbfa1) was used as early differentiation marker for osteoblast. The type I collagen production was determined, which constitutes the main structural protein of the extracellular matrix. Phospholipase $A_2$ and D activity were detected. Results. (1) The anodized titanium had a porous oxide layer, and there was increase in both the size and number of pores with increasing anodizing voltage. (2) With increasing voltage, the surface roughness and thickness of the oxide film increased significantly (p<0.01), the $TiO_2$phase changed from anatase to rutile. During the anodic oxidization, Ca and P ions were more incorporated into the oxide layer. (3) The in vitro cell responses of the specimen were also dependant on the oxidation conditions. With increasing voltage, the ALP activity, type I collagen production, and Cbfa 1 gene expression increased significantly (p<0.01), while the cell proliferation decreased. (4) In preliminary study on the relation of surface property and phospholipase, PLD activity was increased but $PLA_2$ activity did not changed according to applied voltage. Conclusion. The anodized titanium shows improved surface characteristics than the machined titanium. The surface properties acquired by anodization appear to give rise more mature osteoblast characteristics and might result in increased bone growth, and contribute to the achievement of a tight fixation. The precise mechanism of surface property signaling is not known, may be related to phospholipase D.

Bioinspired Metal Surfaces with Extreme Wettability Contrast

  • 유의선;허은규;고태준;이광렬;오규환;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.122-122
    • /
    • 2012
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구 (A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis)

  • 유병열;김찬오
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

Research of reducing thermal stress generated in MGC turbine nozzles

  • Fujimoto, Syuu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.385-390
    • /
    • 2004
  • An unique ceramic material produced through unidirectional solidification with eutectic composition of two-phase oxides was introduced recently. This composite material has the microstructure of coupled networks of two single crystals interpenetrate each other without grain boundaries. Depending on this microstructure this material, called Melt Growth Composite (MGC), can sustain its room temperature strength up to 1$700^{\circ}C$ (near its melting point) and offer strong oxidization-resistant ability, making its characteristics quite ideal for the gas turbine application. The research project on MGC started in 2001 with the objective of establishing component technologies for MGC application to the high temperature components of the gas turbine engine. MGC turbine nozzles are expected to improve efficiency of gas turbine. However, reduction of the thermal stress is required since high thermal stress is easily generated in MGC turbine nozzles due to temperature distribution. Firstly, the hollow nozzle shape was optimized to reduce thermal stress using numerical analysis. From the results of the first hot gas flow tests, the thermal stress due to span-wise temperature distribution was required to be reduced, and separated nozzle to three pieces was designed. This was tested in hot gas flow at 140$0^{\circ}C$ level, and temperature distributions on the nozzle surface were obtained and stress field was evaluated.

  • PDF

금속유물 강화처리를 위한 우레탄 수지의 적용성 연구 (Study on Application of Urethane Materials for Hardening of Metal Artifacts)

  • 이호연;위광철
    • 보존과학회지
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2011
  • 금속 유물의 부식 방지를 위하여 우레탄 코팅제를 제조하였다. 제조된 우레탄 코팅제를 이용하여 그 동안 금속유물 코팅제로 주로 사용된 아크릴계 코팅제의 광택성과 코팅 후에 나타나는 변색 등의 문제점을 해결하고자 하였다. 이를 위하여 합성된 우레탄 코팅제는 아크릴계의 코팅제보다 광택이 낮고 색상 변화가 적도록 제조하였다. 이 코팅제는 기존의 코팅제에 비하여 얇은 코팅 층을 형성하면서도 우수한 접착력을 나타내었으며, 다양한 주위 환경에 의해 나타나는 금속 유물의 표면 산화에 대한 저항력과 표면에서의 발수력이 우수하였다. 또한, 아세톤, 톨루엔, 자일렌 등의 유기용매에 쉽게 용해되는 가역성이 우수한 결과를 나타내고 있어 기존의 아크릴계 금속 유물 코팅 재료를 대체할 수 있는 안정적인 코팅제로 사용할 수 있을 것으로 판단된다.