• 제목/요약/키워드: Surface Mounting Device

검색결과 36건 처리시간 0.026초

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석 (A Dynamic Modeling & State Sensitivity Analysis of the Surface Mounting Device)

  • 장진희;한창수;김정덕
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.90-99
    • /
    • 1996
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformed which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backlash and friction. Therefore a dynamic modeling and state sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensit- ivity analysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensit- ivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design and faster operating based on the results of dynamic and state sensitivity.

  • PDF

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

칩마운터의 진동 해석 및 실험 분석 (Vibration Analysis and Experiments of a Chip Mounting Device)

  • 고병식;이승엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1039-1042
    • /
    • 2002
  • SMD(Surface Mounting Device) which mounts electronic components as IC-Chips on PCB automatically, produces a large dynamic force and vibration. The unwanted vibrations in SMD degrade the performance of the precision device and it is the major obstacle to limit its speed for mounting. This study investigated the vibration analysis of a typical SMD to predict the natural frequencies and mode shapes. To validate the finite element analysis of SMD, the FE result was compared with that of ODS measurements. It was shown that the predicted results were well correlated with the experimental modal parameters.

  • PDF

반복 제어를 이용한 접촉력 제어 (Repetitive Control of Contact Force)

  • 전도영;정일용
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.122-128
    • /
    • 1996
  • In high speed and high precision assembly systems such as a surface mounting device and robotend effector, the contact force control is required. As the operation repeats, the repetitive control is applied to reduce the periodic contact force errors. Since high order unmodelled dynamics are easily excited in contact force control, a Q filter was introduced and its robust stability was analyzed. Simulation and Experimental results show the effectiveness of the algorithm.

  • PDF

Intelligent Force Control of a Flip Chip Mounting System

  • Shim, Jae Hong;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.316-321
    • /
    • 2004
  • In this paper, we have developed a new mounting head system for flip chip. The proposed head system consists of a macro/micro positioning actuator for stable force control. The macro actuator provides the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and the surface of a PCB(printed circuit board). In order to show the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed system with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions such as various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘 (Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device)

  • 정재욱;태현철
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

다기능 표면실장기의 공정계획 프로그램 개발 (Development of the Process Planning Program for a Multi-functional Surface Mounting Device)

  • 손진현;유성열;강장하;박성수;오병준;성필영
    • 산업공학
    • /
    • 제10권1호
    • /
    • pp.155-167
    • /
    • 1997
  • The purpose of this study is to develop the program for efficient operation of a multi-functional surface mounting device(SMD) which mount various components on a printed circuit board(PCB). These components are provided by diverse types of feeders such as cassette, stick and tray feeders. The SMD has one or two heads. In the SMD, the positions of PCB and feeders and fixed, and the head moves to pick up a component from a feeder and to mount it on the PCB. The number of lanes occupied by each feeder and the nozzle used for each component can be different. We develop an off-line program to minimize the cycle-time of the SMD by studying the optimal assignment of feeders and the optimal mounting sequence of components. Graphical User Interface(GUI) is also developed. Additionally, we consider the line balancing problem which appears when two SMDs are used sequentially.

  • PDF

Design and Contact Force Control of a Flip Chip Mounting Head system

  • Kim, Kyoung-Jun;Shim, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1060-1065
    • /
    • 2003
  • This paper contributes to development of a new chip mounting head system for flip chip. Recently, the LDM(Linear DC Motor) has been widely used, because it has particular merits than the rotary type motors. In this paper, we proposed a macro/micro positioning system for force control of a chip mounting system. In the proposed macro/micro system, the macro actuator provide the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and PCB surface. In order to prove the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed chip mounting head with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions of various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

  • PDF

칩 마운터에의 FIC 부품 인식에 관한 연구 (A study on the inspection algorithm of FIC device in chip mounter)

  • 류경;문윤식;김경민;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.384-391
    • /
    • 1998
  • When a device is mounted on the PCB, it is impossible to have zero defects due to many unpredictable problems. Among these problems, devices with bent corner leads due to mis-handling and which are not placed at a given point measured along the axis are principal problem in SMT(Surface Mounting Technology). It is obvious that given the complexity of the inspection task, the efficiency of a human inspection is questionable. Thus, new technologies for inspection of SMD(Surface Mounting Device) should be explored. An example of such technologies is the Automated Visual Inspection(AVI), wherein the vision system plays a key role to correct this problem. In implementing vision system, high-speed and high-precision are indispensable for practical purposes. In this paper, a new algorithm based on the Radon transform which uses a projection technique to inspect the FIC(Flat Integrated Circuit) device is proposed. The proposed algorithm is compared with other algorithms by measuring the position error(center and angle) and the processing time for the device image, characterized by line scan camera.

  • PDF

B-spline 표면 근사화 기반의 3차원 솔더 페이스트 검사 (3-D Solder Paste Inspection Based on B-spline Surface Approximation)

  • 이준재;이병국;류재칠
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제10권1호
    • /
    • pp.31-45
    • /
    • 2006
  • 최근 고집적화, 고밀도화 되어가는 첨단 디바이스와 섬세한 공정들은 SMT(surface mounting technology)에서의 더욱 까다로운 검사 항목들을 요구하고 있다. 특히, 어셈블리 생산품의 불량의 60% 이상을 차지하는 솔더 프린팅의 검사는 이러한 추세에 대응책으로 3차원적인 검사방식이 기존의 2차원적인 검사방식을 빠르게 대치해나가고 있다. 따라서 본 논문에서는 SMT 어셈블리 라인에서 PCB(Printed circuit board)에 프린팅된 솔더 페이스트에 대한 3차원적인 검사를 자동으로 수행하는 인라인형의 고속 3차원 검사 장비 및 측정 알고리즘을 제안한다. 제안한 방법은 3차원 데이터를 B-스플라인으로 표면을 구성한 다음 이를 기반으로 패드를 추출하고, 검사하는 알고리즘이다.

  • PDF