• Title/Summary/Keyword: Surface Mobility

Search Result 644, Processing Time 0.031 seconds

Degradation of electrical characteristics in Bio-FET devices by O2 plasma surface treatment and improving by heat treatment (O2 플라즈마 표면처리에 의한 Bio-FET 소자의 특성 열화 및 후속 열처리에 의한 특성 개선)

  • Oh, Se-Man;Jung, Myung-Ho;Cho, Won-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.199-203
    • /
    • 2008
  • The effects of surface treatment by $O_2$ plasma on the Bio-FETs were investigated by using the pseudo-MOSFETs on the SOI substrates. After a surface treatment by $O_2$ plasma with different RF powers, the current-voltage and field effect mobility of pseudo-MOSFETs were measured by applying back gate bias. The subthreshold characteristics of pseudo-MOSFETs were significantly degraded with increase of RF power. Additionally, a forming gas anneal process in 2 % diluted $H_2/N_2$ ambient was developed to recover the plasma process induced surface damages. A considerable improvement of the subthreshold characteristics was achieved by the forming gas anneal. Therefore, it is concluded that the pseudo-MOSFETs are a powerful tool for monitoring the surface treatment of Bio-FETs and the forming gas anneal process is effective for improving the electrical characteristics of Bio-FETs.

Development of Surface Roughness Index using Gyroscope (자이로스코프를 이용한 노면 평탄도 분류지수 개발)

  • Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, the process of providing information necessary to remove physical barriers such as road slopes that obstruct the activities of the disabled is in progress. Through experiments, we implement a quantified road surface roughness index that enables the implementation of IoT-based systems necessary for the elderly and the disabled to safely move to their destination. As a preliminary study, a road surface measurement device using a gyroscope was devised. To check the roughness and flatness of the road surface, X, Y displacement, and acceleration displacement were measured using a gyroscope. By calculating the measured data, the roughness and flatness of the road surface were quantified from 0 to 100. We implemented an algorithm that divides this index into 4 stages, displays it on a map, and provides it to users. Finally, a system for the disabled and elderly electric wheelchair users to secure basic mobility was established.

Joint Mobilization Techniques of the Shoulder Joint Dysfunction (견관절 장애와 관절 가동운동(mobilization))

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.39-49
    • /
    • 1996
  • The techniques of joint mobilization and traction are used to improve joint mobility or to decrease pain by restoring accessory movements to the shoulder joints and thus allowing full, nonrestriced, pain-free range of motion. In the glenohumeral joint, the humeral head would be the convex surface, while the glenoid fossa would be the concave surface. The medial end of the clavicle is concave anterioposteriorly and convex superioinferiorly, the articular surface of the sternum is reciprocally curved. The acromioclavicular joint is a plane synovial joint between a small convex facet on lateral end of the clavicle and a small concave facet on the acromion of the scapula. The relationship between the shape of articulating joint surface and the direction of gliding is defined by the convex-concave rule. If the concave joint surface is moving on a stationary convex surface, gliding occur in the same direction as the rolling motion. If the convex surface is moving on a stationary concave surface, gliding will occur in an opposite direction to rolling. Hypomobile shoulder joint are treated be using a gliding technique.

  • PDF

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • Lee, Jae-Hyeon;Choe, Sun-Hyeong;Jang, Ya-Mu-Jin;Kim, Tae-Geun;Kim, Dae-Won;Kim, Min-Seok;Hwang, Dong-Hun;Najam, Faraz;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

Highly Improved Electrical Properties of A1/CaF2/Diamond MISFET Fabricated by Ultrahigh Vacuum Process and Its Application to Inverter Circuit (초고진공 프로세스에 의해 제작된 A/CaF2/Diamond MISFET의 개선된 전기적 특성과 인버터회로에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.536-541
    • /
    • 2003
  • In order to avoid oxygen contamination on the diamond surface as far as possible during the device process, the A1/Ca $F_2$/diamond MISFET(metal-insulator-semiconductor field-effect transistor) was prepared by ultrahigh vacuum process and its electrical properties were investigated. The surface conductive layer of fluorinated diamond surface was employed for the conducting channel of the MISFET. The observed effective mobility(${\mu}$e$\_$ff/) of the MISFET was 300 c $m^2$/Vs, which is the highest value obtained until now in the diamond FET. Besides, the measured surface state density of the device was ∼10$\^$11//c $m^2$ eV, which is comparable with conventional Si MOSFET$\_$s/(metal-oxide-semiconductor field-effect-transistors). This work is the first report of the fluorinated diamond MISFET prepared by ultrahigh vacuum process and its application to inverter circuit.

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Dynamics of Extra-Vehicular Activities in Low-Gravity Surface Environments

  • Spencer, David A.;Gast, Matthew A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Human spaceflight experience in extra-vehicular activity (EVA) is limited to two regimes: the micro-gravity environment of Earth orbit, and the lunar surface environment at one-sixth of Earth's gravity. Future human missions to low-gravity bodies, including asteroids, comets, and the moons of Mars, will require EVA techniques that are beyond the current experience base. In order to develop robust approaches for exploring these small bodies, the dynamics associated with human exploration on low-gravity surface must be characterized. This paper examines the translational and rotational motion of an astronaut on the surface of a small body, and it is shown that the low-gravity environment will pose challenges to the surface mobility of an astronaut, unless new tools and EVA techniques are developed. Possibilities for addressing these challenges are explored, and utilization of the International Space Station to test operational concepts and hardware in preparation for a low-gravity surface EVA is discussed.

그래핀 표면처리를 통한 high-k dielectrics 증착

  • Kim, Gi-Seok;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.11-11
    • /
    • 2014
  • CVD 로 성장된 그래핀 표면위에 transfer 와 lithography 공정에서 잔류하게 되는 PMMA residue 는 mobility 의 감소와 high-k dielectrics 의 증착을 방해하는 결정적인 요인이다. 우리는 최적화 되어진 Ar ion beam 을 통해 PMMA residue 를 damage 없이 효과적으로 제거하였고, 손쉽게 high-k dielectrics 를 uniform 하게 증착할 수 있었다.

  • PDF

Reduction of Leakage current Generated by Degradation in Organic Thin Film Transistors using Pattern on Pentacene Surface by Atomic Force Microscope

  • Hwang, Hyun-Doo;Kim, Hyun-Suck;Kim, Chang-Ho;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.560-562
    • /
    • 2009
  • In this paper, we proposed a simple method of decreasing the off current generated by degradation for improve the electrical characteristics such as mobility and on/off current ratio by making the line patterns on the pentacene surface between the electrodes using atomic force microscope (AFM) lithography.

  • PDF

Interface engineering for high-k dielectric integration on III-V MOSFETs

  • Lee, Seong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.154-155
    • /
    • 2012
  • In this work, we report the comprehensive study of performance enhancement of InGaAs n-MOSFET by plasma $PH_3$ p assivation. The calibrated plasma $PH_3$ passivation of the InGaA ssurface before CVD high-k dielectric deposition significantly improves interface quality, resulting in suppressed frequency dispersion in C-V, increase in drive-current with high electron mobility, and excellent thermal stability.

  • PDF