• Title/Summary/Keyword: Surface Measurement

Search Result 5,000, Processing Time 0.033 seconds

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

EFFECT OF FILM THICKNESS OF RESIN CEMENT ON BONDING EFFICIENCY IN INDIRECT COMPOSITE RESTORATION (레진 시멘트의 film thickness가 간접 복합 레진 수복물의 접착 효율에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyuck;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of film thickness of various resin cements on bonding efficiency in indirect composite restoration by measurement of microtensile bond strength, polymerization shrinkage, flexural strength and modulus, fractographic FE-SEM analysis. Experimental groups were divided according to film thickness (< $50\;{\mu}m$-control, $50\;{\mu}m$-T50, $100\;{\mu}m$-T100, $150\;{\mu}m$-T150) using composite- based resin cements (Variolink II, Duo-Link) and adhesive-based resin cements (Panavia F, Rely X Unicem). The data was analyzed using ANOVA and Duncan's multiple comparison test (p < 0.05). The results were as follows ; 1. Variolink II showed higher microtensile bond strength than that of adhesive-based resin cements in all film thickness (p < 0.05) but Duo-Link did not show significant difference except control group (p > 0.05). 2. Microtensile bond strength of composite-based resin cements were decreased significantly according to increasing film thickness (p < 0.05) but adhesive-based resin cements did not show significant difference among film thickness (p > 0.05). 3. Panavia F showed significantly lower polymerization shrinkage than other resin cements (p < 0.05). 4. Composite-based resin cements showed significantly higher flexural strength and modulus than adhesive-based resin cements (p < 0.05). 5. FE-SEM examination showed uniform adhesive layer and well developed resin tags in composite-based resin cements but unclear adhesive layer and poorly developed resin tags in adhesive-based resin cements. In debonded surface examination, composite-based resin cements showed mixed failures but adhesive-based resin cements showed adhesive failures.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.332-350
    • /
    • 2019
  • Zonal hydrographic section measurements at $39.7^{\circ}N$ were conducted between $129.0^{\circ}E$ and $131.3^{\circ}E$ from August 7 to 25 in 2017 using an underwater glider. The glider traveled about 440 km for about 18 days along the 106 line of the regular shipboard measurements in the National Institute of Fishery Science (NIFS) and obtained twice a hydrographic section with high horizontal resolution. Even under the strong East Korea Warm Current with maximum speed of 0.8 m/s across the section, the glider successfully maintained the designated path within an RMS distance of 400 m. By comparing with the NIFS shipboard hydrographic section, it is confirmed that high spatial resolution measurements obtained from a glider were necessary to properly observe front and eddy variability in the East Sea where a typical spatial scale is smaller than the open oceans. From the glider section measurements, a new lens-shaped eddy was found in the thermocline. The lens-shaped anticyclonic eddy had 10~13 km in horizonal width and about 200 m in height like a typical submesoscale eddy resided within the thermocline, which was firstly named as Korea intrathermocline eddy (Keddy). The Keddy has the distinguishing characteristics of a typical intrathermocline eddy, such as a central core with anomalously weak stratification, a convex shaped lens bounded by the stratification anomaly, an interior maximum of velocity at 170 m, no surface appearance of the geopotential field, a small or comparable horizontal width relative to the first baroclinic Rossby radius of deformation, and the Rossby nubmer of 0.7.

A Study on the Application of Physical Soil Washing Technology at Lead-contaminated Shooting Range in a Closed Military Shooting Range Area (폐 공용화기사격장 내 납오염 사격장 군부지의 물리적 토양세척정화기술 적용성 연구)

  • Jung, Jaeyun;Jang, Yunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.492-506
    • /
    • 2019
  • Heavy metal contaminants in the shooting range are mostly present in a warhead circle or a metal fragment present as a particle, these fine metal particles are weathered for a long period of time is very likely that the surface is present as an oxide or carbon oxide. In particular, lead which is a representative contaminant in the shooting range soil, is present as more fine particles because it increases the softness and is stretched well. Therefore, by physical washing experiment, we conducted a degree analysis, concentration of heavy metals by cubic diameter, composition analysis of metallic substances, and assessment of applicability of gravity, magnetism and floating selection. The experimental results FESEM analysis and the measurement results lead to the micro-balance was confirmed thatthe weight goes outless than the soil ofthe same size in a thinly sliced and side-shaped structure according to the dull characteristics it was confirmed that the high specific gravity applicability. In addition, the remediation efficiency evaluation results using a hydrocyclone applied to this showed a cumulative remediation efficiency of 71%,twice 80%, 3 times 91%. On the other hand, magnetic sifting showed a low efficiency of 17%,floating selection -35mesh (0.5mm)target soil showed a relatively high efficiency to 39% -10mesh (2mm) efficiency was only 16%. The target treatment diameter of soil washing should be 2mm to 0.075mm, which is applied to the actual equipment by adding an additional input classification, which would require management as additional installation costs and processes are constructed. As a result, it is found that the soilremediation of shooting range can be separately according to the size of the warhead. The size is larger than the gravel diameter to most 5.56mm, so it is possible to select a specific gravity using a high gravity. However, the contaminants present in the metal fragments were found to be processed by separating using a hydrocyclone of the soil washing according to the weight is less than the soil of the same particle size in a thinly fragmented structure.

Usability assessment of thermoplastic Bolus for skin VMAT radiotherapy (피부 병변에 대한 VMAT 치료 시 열가소성 bolus의 유용성 평가: case review)

  • Kim, Min Soo;Kim, Joo Ho;Shin, Hyun Kyung;Cho, Min Seok;Park, Ga Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.85-92
    • /
    • 2020
  • Purpose: To find out the advantages of thermoplastic bolus compared to conventional bolus, which is mainly used in clinical practice, We evaluated Two cases in terms of dose and location reproducibility to assess Usability of thermoplastic Bolus for skin VMAT radiotherapy. Materials and Methods: Two patient's treated with left breast skin lesion were simulated using thermoplastic Bolus and planned with 2arc VMAT. the prescription dose was irradiated to 95% or more of the target volume. We evaluated The reproducibility of the bolus position by measuring the length of the air gap in the CBCT (Cone Beam CT) image. to evaluate dose reproducibility, we compared The dose distribution in the plan and CBCT and measured in vivo for patient 2. Results: The difference between the air gap in patient 1's simulation CT and the mean air gap (M1) during 10 treatments in the CBCT image was -0.42±1.24mm. In patient 2, the difference between the average air gap between the skin and the bolus (M2) during 14 treatments was -1.08±1.3mm, and the air gap between the bolus (M3) was 0.49±1.16. The difference in the dose distribution between Plan CT and CBCT was -1.38% for PTV1 D95 and 0.39% for SKIN (max) in patient 1. In patient 2, PTV1 D95 showed a difference of 0.63% and SKIN (max) -0.53%. The in vivo measurement showed a difference of -1.47% from the planned dose. Conclusion: thermoplastic Bolus is simpler and takes less time to manufacture compared to those produced by 3D printer. Also compared to conventional bolus, it has high reproducibility in the set-up side and stable results in terms of dose delivery.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation (WebGIS 기반 해양 연구선 상시관측 정보 체계 구축)

  • HAN, Hyeon-Gyeong;LEE, Cholyoung;KIM, Tae-Hoon;HAN, Jae-Rim;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.