• Title/Summary/Keyword: Surface Friction Welding

Search Result 84, Processing Time 0.03 seconds

Manufacturing and Properties of Metal Based Composite Produced By Friction Stir Processing (마찰교반프로세스를 이용한 금속기 복합소재 제조 및 특성)

  • Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.27-33
    • /
    • 2012
  • Friction stir processing (FSP), developed based on the basic principles of friction stir welding(FSW), a solid-state joining process originally developed for various metal alloys, is an emergingmetalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

Hot Extru-Pressure Welding of Aluminum Rods using Eccentric-inclined Stepped Welding Dies (편심 경사 계단형 접합 다이를 사용한 알루미늄 봉재의 열간 압출압접)

  • Jin I. T.;Lee K. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.206-209
    • /
    • 2005
  • It was investigated that two rods of aluminium can be welded by hot extru-pressure welding method with stepped welding dies, and that the welding pressure on the welding surface were analyzed by computer simulation according to the stepped shapes of welding dies. It was known by computer simulation that welding pressure on the welding section of rods welded using stepped welding dies without eccentricity is lowerer than the welding pressure of rods welded using stepped welding dies with eccentricity of welding surface, and that the welding pressure on the welding section of rods using eccentric-inclined stepped welding dies is higher than the welding pressure of rods using stepped welding dies without eccentricity. And it was known by experiments that two rods of aluminium can be welded on the end sections by hot pressure welding method using eccentric-inclined stepped welding dies without relative rotational movement of contacted aluminium rods needed for the purpose of friction heating and pressure.

  • PDF

Formability of Locally Surface-Modified Aluminum Alloy Sheets (국부 표면개질된 알루미늄 합금 판재의 성형성)

  • Lee C. G.;Kim S. J.;Lee T. H.;Park S. S.;Ham H. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.299-300
    • /
    • 2005
  • Surface friction welding (SFW) is a newly developed technology fur joining thin metal sheets, which utilizes friction between tool and weldment. In the present study, the 5052 and 1050 Al sheets were locally surface-modified using SFW technology. Formability of the locally surface-modified sheets was superior to that of the parent material. Yield or tensile strengths of the locally surface-modified specimens were lower then those of the parent material, but elongations of the locally surface-modified specimens were higher then that of the parent material.

  • PDF

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

A Study on Hot Extru-welding Dies of Aluminum Rods (알루미늄 봉재의 열간 압출접합 금형에 관한 연구)

  • Lee, Kyeng-Kook;Jin, In-Tai
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.27-30
    • /
    • 2008
  • It was investigated that two rods of aluminium can be welded by hot extru-welding method with extru-welding dies, and that the extru-welding on the welding surface were analyzed by computer simulation according to the steped shapes of welding dies. It was known by computer simulation that welding pressure on the welding section of rods welded using extru-welding dies and that the welding pressure on the welding section of rods using extru-welding dies is lowerer than the welding pressure of rods using stepped welding dies. And it was known by experiments that two rods of aluminium can be welded on the end sections by hot extru-welding method using fan-shaped stepped welding dies without relative rotational movement of contacted aluminium rods needed for the purpose of friction heating and pressure.

  • PDF

A Study of Extru-Pressure Welding Strength of Aluminum Rods (알루미늄 봉재의 압출압접 강도에 관한 연구)

  • Lee, K.K.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.284-291
    • /
    • 2008
  • It was investigated that two rods of aluminum can be welded by hot extru-pressure welding method with stepped welding dies, and that the welding pressure and metal flow on the welding surface were analyzed by computer simulation according to the stepped shapes of welding dies. It was known by computer simulation that welding pressure on the welding section of rods welded using stepped welding dies could be higher than the welding pressure of aluminum rods without using stepped welding die. And it was known by experiments that two rods of aluminum can be welded on the end sections by hot extru-pressure welding method using stepped welding dies without relative rotational movement of contacted aluminum rods in the case of friction welding of rods.

A Study on the Friction Welding for Light Piston-Rod(SM45C/SM45C-Pipe) (경량 피스톤 로드를 위한 마찰용접 적용연구(SM45C/SM45C-Pipe 사용))

  • Min, Byung-Hoon;Lim, Hyung-Taek;Min, Taeg-Ki
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • Various research to reduce weight of a car is achieving. This research is tendencious to manufacture solid piston rod of shock absorber as hollow piston rod using friction welding. This study deals with the friction welding of SM45C to SM45C-Pipe that is used in car shock absorber, The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. 1. In tensile strength, the hole processing is better than non-hole processing. 2. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 869MPa, which is 103% of SM45C's tensile strength and 91% of SM45C's Pipe. 3. When the friction time was 2.0seconds under the conditions, the maximum bending strength of the friction weld happened to be 1599MPa, which is 80% of SM45C's bending strength and 118% of SM45C's Pipe.

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy (마찰교반접합된 니켈기 초합금의 기계적 특성)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.410-414
    • /
    • 2011
  • This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.