Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.7.410

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy  

Song, Kuk-Hyun (Korea Institute of Industrial Technology)
Nakata, Kazuhiro (Joining and Welding Research Institute)
Publication Information
Korean Journal of Materials Research / v.21, no.7, 2011 , pp. 410-414 More about this Journal
Abstract
This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.
Keywords
$\underline{Ni-base\superalloy}$; $\underline{friction\stir\welding}$; grain refinement; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. D. Kim, C. J. Kim and C. M. Chung, J. Mater. Process Tech., 114, 51 (2001).   DOI   ScienceOn
2 M. B. Henderson, D. Arrell, R. Larsson, M. Heobel and G. Marchant, Science and Technology of Welding & Joining., 9, 13 (2004).   DOI   ScienceOn
3 R. Nandan, T. DebRoy and H. K. D. H. Bhadeshia, Progr. Mater. Sci., 53, 980 (2008).   DOI   ScienceOn
4 R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R Rep., 50, 1 (2005).   DOI   ScienceOn
5 J. Altenkirch, A. Steuwer, M. Peel, D. G. Richards and P. J. Withers, Mater. Sci. Eng, A488, 16 (2008).
6 A. Simar, Y. Bréchet, B. de Meester, A. Denquin and T. Pardoen, Mater. Sci. Eng., A486, 85 (2008).
7 V. Balasubramanian, Mater. Sci. Eng, A480, 397 (2008).
8 R. P. Dobriyal, B. K. Dhindaw, S. Muthukumaran and S. K. Mukherjee, Mater. Sci. Eng., A477, 243 (2008).
9 F. Ye, H. Fujii, T. Tsumura and K. Nakata, J. Mater. Sci., 41, 5376 (2006).   DOI
10 Y. S. Sato, P. Arkom, H. Kokawa, T. W. Nelson and R. J. Steel, Mater. Sci. Eng., A477, 250 (2008).
11 R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., p.247-249, PWS, Boston, USA (2002).
12 F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, p.178, Elsevier, Oxford, UK (1996).
13 J. B. Lee, D. G. Nam, N. H. Kang, Y. D. Kim, W. T. Oh and Y. D. Park, Kor. J. Mater. Res., 19(7), 369 (2009) (in Korean).   과학기술학회마을   DOI   ScienceOn
14 C. T. Sims, N. S. Stoloff and W. C. Hagel, Superalloys II, p. 97, New York, Wiley (1987).
15 J. D. Kim and J. H. Moon, Corrosion Sci., 46, 807 (2004).   DOI   ScienceOn
16 Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim and H. S. Kwon, Corrosion Sci., 43, 1321 (2001).   DOI   ScienceOn