• Title/Summary/Keyword: Surface Fitting

Search Result 396, Processing Time 0.023 seconds

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

3D Surface Approximation to Serial 2D Cross Sections (단면정보로부터 3차원 근사곡면의 생성)

  • 박형준;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.719-724
    • /
    • 1994
  • This paper describes a hybrid surface-based method for smooth 3D surface approximation to a sequence of 2D cross sections. The resulting surface is a hybrid G $^{1}$ surface represented by a mesh of triangular and rectangular Bezier patches defined on skinning, branching, or capping regions. Each skinning region is approximated with a closed B_spline surface, which is transformed into a mesh of Bezier patches. Triangular G $^{1}$ surfaces are constructed over brabching and capping regions such that the transitions between each capping regions such that the transitions between each triangular surface and its neighboring skinning surfaces are G $^{1}$ continuous. Since each skinning region is represented by an approximated rectangular C $^{2}$ suface instead of an interpolated trctangular G $^{[-1000]}$ surface, the proposed method can provide more smooth surfaces and realize more efficient data reduction than triangular surfacebased method.

  • PDF

Standard Measurement Procedure for Soil Radon Exhalation Rate and Its Uncertainty

  • Seo, Jihye;Nirwono, Muttaqin Margo;Park, Seong Jin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • Background: Radon contributing about 42% of annual average dose, mainly comes from soil. In this paper, standard measurement procedures for soil radon exhalation rate are suggested and their measurement uncertainties are analyzed. Materials and Methods: We used accumulation method for estimating surface exhalation rate. The closed-loop measurement system was made up with a RAD7 detector and a surface chamber. Radon activity concentrations in the system were observed as a function of time, with data collection of 5 and 15-minute and the measurement time of 4 hours. Linear and exponential fittings were used to obtain radon exhalation rates from observed data. Standard deviations of measurement uncertainties for two approaches were estimated using usual propagation rules. Results and Discussion: The exhalation rates (E) from linear approach, with 30 minutes measurement time were $44.8-48.6mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.14-2.32atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with relative measurement uncertainty of about 10%. The contributions of fitting parameter A, volume (V) and surface (S) to the estimated measurement uncertainty of E were 59.8%, 30.1% and 10.1%, in average respectively. In exponential fitting, at 3-hour measurement we had E ranged of $51.6-69.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.46-3.30atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with about 15% relative uncertainty. Fitting with 4-hour measurement resulted E about $51.3-68.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.45-3.25atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with 10% relative uncertainty. The uncertainty contributions in exponential approach were 75.1%, 13.4%, 8.7%, and 2.9% for total decay constant k, fitting parameter B, V, and S, respectively. Conclusion: In obtaining exhalation rates, the linear approach is easy to apply, but by saturation feature of radon concentrations, the slope tends to decrease away from the expected slope for extended measurement time. For linear approach, measurement time of 1-hour or less was suggested. For exponential approach, the obtained exhalation rates showed similar values for any measurement time, but measurement time of 3-hour or more was suggested for about 10% relative uncertainty.

Selection of Variables for Response Surface Experiments with Mixtures

  • Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.6 no.2
    • /
    • pp.103-115
    • /
    • 1977
  • A strategy for selecting subsets of variables from a given linear model in a mixture system is discussed. The purpose is to achieve better fitting surfaces for estimation of the response in an experimental region of interest. A criterion is proposed for screening variables and illustrated with an example.

  • PDF

Point Set Denoising Using a Variational Bayesian Method (변분 베이지안 방법을 이용한 점집합의 오차제거)

  • Yoon, Min-Cheol;Ivrissimtzis, Ioannis;Lee, Seung-Yong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.527-531
    • /
    • 2008
  • For statistical modeling, the model parameters are usually estimated by maximizing a probability measure, such as the likelihood or the posterior. In contrast, a variational Bayesian method treats the parameters of a model as probability distributions and computes optimal distributions for them rather than values. It has been shown that this approach effectively avoids the overfitting problem, which is common with other parameter optimization methods. This paper applies a variational Bayesian technique to surface fitting for height field data. Then, we propose point cloud denoising based on the basic surface fitting technique. Validation experiments and further tests with scan data verify the robustness of the proposed method.

Energy Based Multiple Refitting for Skinning

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The traditional method of manipulation of knots and degrees gives poor quality of surface, if compatibility of input curves is not good enough. In this work, a new algorithm of multiple refitting of curves has been developed using minimum energy based formulation to get compatible curves for skinning. The present technique first reduces the number of control points and gives smoother surface for given accuracy and the surface obtained is then skinned by compatible curves. This technique is very useful to reduce data size when a large number of data have to be handled. Energy based technique is suitable for approximating the missing data. The volumetric information can also be obtained from the surface data for analysis.

Treatment of Contact between Roll/Roll and Roll/Strip for Rolling Process Simulation (압연공정해석을 위한 판과 롤의 접촉 경계면 처리)

  • 김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.156-159
    • /
    • 2003
  • Surface normal vector and surface velocity are very important parameters to simulate rolling processes precisely. In this study, Local displacement functions are constructed for each node on the contact surface and parameters are found by the least square fitting of displacement on the neighbor nodes. Deformation gradient tensor is calculated from the displacement function and surface normal vector and velocity also can be derived. Flat rolling simulation model is presented on the basis of the suggested contact scheme. Series of rolling process simulation are carried out and the results are compared with the experiments.

  • PDF

An Integrated System for Computer-Aided Design and Manufacturing of Sculptured Surface (자유곡면 가공을 위한 CAD/CAM 시스템)

  • Kim, K.S.;Choi, Y.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.37-49
    • /
    • 1991
  • This report describes an integrated approach to sculptured surface design and manufacture, and a software package for it on a multi-axis NC milling machine. The integrated software consists of four parts : (1) surface fitting procedure for generating the characteristic polyhedron from 3 dimensional CMM data, (2) surface description for generating the mathematical representation of sculptured surfaces. (3) tool path generation for approximating the surface representation into a sequence of linear cutter paths, and (4) tool control for generating the corresponding joint variable values. This integrated approach is generally applicable to sculptured surface manufacturing where multi-axis milling machines are necessary to produce smooth three-dimensional surfaces.

  • PDF

Complete 3D Surface Reconstruction from an Unstructured Point Cloud of Arbitrary Shape by Using a Bounding Voxel Model (경계 복셀 모델을 이용한 임의 형상의 비조직화된 점군으로부터의 3 차원 완전 형상 복원)

  • Li Rixie;Kim Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.906-915
    • /
    • 2006
  • This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.