• Title/Summary/Keyword: Surface Finishing Process

Search Result 247, Processing Time 0.033 seconds

Development of Surface Finishing Methodology for the Laminated Pattern Removal of VLM-ST Parts (VLM-ST 시작품의 적층무늬 제거를 위한 표면처리 방법론 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Song Min-Sup;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • A new effective thick-layered RP process, Transfer-type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. VLM-ST has the innate advantages by virtue of its working principle: high building speed, low cost for introduction and maintenance of VLM-ST apparatus, little staircase surface irregularities of parts. Despite these advantages in VLM-ST, the surface roughness of VLM-ST parts is still inadequate to be used as RP master patterns for rapid tooling (RT). This paper describes the systematic and effective methodology to remove the laminated pattern and improve the surface roughness for VLM-ST parts. From the results of surface finishing of VLM-ST parts, it can be seen that the laminated pattern is completely removed and the surface characteristics such as surface roughness, surface hardness, and paintability are improved.

Effects of Magnitic Field on Electrochemical Polishing Process (자기장이 전해복합연마공정에 미치는 영향)

  • 김정두;최민석;김동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.108-112
    • /
    • 1994
  • The paper describes the effects of magnetic field on the electrochemical polishing process in the view of ionic in the electrolyte. Theoretical background was suggested how magnetic field increases the material removal efficiency and surface finishing ability Magnetic field changes the jonic movement in the electrolyte from linear motion to curved or complex oscillating one, thus increases the electrolytic current density and, as the results, the finishing efficiency.

  • PDF

Machining Properties to Nano-Level Mirror Surface Finishing for Fine Grained WC-Co 18% Alloy using Magnetic Polishing Slurry (자성연마슬러리를 이용한 초미립 초경합금(WC-Co 18%)의 나노급 경면가공 특성)

  • Kwak, Tae-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • This study has been focused on an effective surface finishing method combining ELID (ELectrolytic In-process Dressing) and MAP (Magnetic Assisted Polishing) for the nano-precision mirror grinding of glass-lens molding mould. ELID grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP has been used as polishing method due to its high polishing efficiency and superior surface quality. It also presents some techniques for achieving the nanometer roughness of the hard material such as WC-Co, which are extensively used in precision tooling material.

The Principle of Magnetorheological finishing for a micro part (자성 유체를 이용한 미세연마가공의 원리)

  • 김동우;신영재;이응숙;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1840-1843
    • /
    • 2003
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

  • PDF

The Internal Finishing of Fine-Pipe Polished by using Magnetic Abrasive Machining. (자기연마를 이용한 미세파이프 내면가공)

  • Rho, T. W.;Park, W. K.;Seo, Y. I.;Choi, H.;Lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.964-967
    • /
    • 2002
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, another method of magnetic abrasive machining in which the N and S magnetic poles are feed and a workpiece is rotated only is tried in a fine-pipe, and its finishing characteristics is experimently investigated by various effective factors such as feeding amplitude. From the experimental results, it is found that the feed effects of magnetic poles on the finishing characteristics are large in internal finishing.

  • PDF

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

A Study on the Intergrated Finishing Characteristics for Dies and Molds (금형의 복합연마 특성에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.937-941
    • /
    • 1997
  • Utomatic finishing process requires the development of high efficient and precision abrasive machining method for die and molds. This study describes the evaluation of the finishing characteristics, such as sufrace roughness, topography and material removal depth, of the electrolytic chemical mixed abrasive machining method. Experimental setup is composed of 3 axis machining center, a newly developed finishing attachment with constant pressure, electrode and electrolytic bath. Finally, we achieved a successful result that surface roughness is 0.01 .mu. m Ra and material removal depth is 145 .mu. m after 100 times repeat-finishing using electrolytic (0.8A,30V) mixed abrasive (#400 CBN, #320 Sic) machining method.

  • PDF

Study on Prediction of Surface Roughness in Hard Turning by Cutting Force (절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구)

  • 이강재;양민양;하재용;이창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials (CFRP/금속간 접합력 강화를 위한 접합공정 연구)

  • Kwon, Dong-Jun;Park, Sung-Min;Park, Joung-Man;Kwon, Il-Jun
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.416-421
    • /
    • 2017
  • The structural adhesive have been manufactured for improvement of bonding process between CFRP and metal. The optimal condition for bonding process were investigated by evaluating the lap shear strength with amount of adhesive and curing time and the surface treatment of the CFRP. To confirm proper adhesion conditions, the fracture sections between CFRP and metal was observed using reflection microscope. Not only the improvement of the adhesion condition was important, but surface treatment on CFRP was also important. The optimal curing temperature was at $180^{\circ}C$ for 20 minutes. The improvement for adhesive property was confirmed After surface treatment on CFRP. The optimal amount of structural adhesive for bonding between CFRP and metal was $1.5{\times}10^{-3}g/mm^2$. Through the optimization of bonding process, the improvement of mechanical property over 10% is confirmed in comparison with existing adhesive.

A Study on the Machining Error Characteristics in Ball-End Milling of Surface (곡면의 볼 엔드밀 가공에서 가공오차 특성에 관한 연구)

  • Sim, Ki-Joung;Yu, Jong-Sun;Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • Machining error is defined the normal distance between designed surface and actual tool path with tool deflection. This is inevitably caused by the tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, tool deflection is usually known as the most significant factor of machining error. Tool deflection problem is analyzed using Instantaneous horizontal cutting forces. The high quality and precision of machining products are required in finishing. In order to achieve these purposes, it is necessary work that decrease the machining error. This paper presents a study on the machining error caused by the tool deflection in ball end milling of 2 dimensional surface. Tool deflection model and simple machining error prediction model are described. This model is checked the validity with machining experiments of 2 dimensional surface. These results may be used to decrease machining error and tool path decision.

  • PDF