• Title/Summary/Keyword: Surface Finish Technology

Search Result 147, Processing Time 0.063 seconds

Magnetic Polishing Using Ba-Ferrite Magnetic Substance (Ba-Ferrite 자성체를 사용한 자기연마 가공)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2010
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision techniques and has an aim for clean technology in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get the best surface roughness at low cost. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

Surface Reconstruction for Cutting Path Generation on VLM-Slicer (VLM-Slicer에서 절단 경로 생성을 위한 측면 형상 복원)

  • Lee, Sang-Ho;An, Dong-Gyu;Yang, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.71-79
    • /
    • 2002
  • A new rapid prototyping process, Variable Lamination Manufacturing using a 4-axis-controlled hotwire cutter and expandable polystyrene foam sheet as a laminating material of the part (VLM-S), has been developed to reduce building time and to improve the surface finish of parts. The objective of this study is to reconstruct the surface of the original 3D CAD model in order to generate mid-slice data using the advancing front technique. The generation of 3D layers by a 4 axis-controlled hot-wire cutter requires a completely different procedure to generate toolpath data unlike the conventional RP CAD systems. The cutting path data for VLM-S are created by VLM-Slicer, which is a special CAD/CAM software with automatic generation of 3D toolpath. For the conventional sheet type system like LOM, the STL file would be sliced into 2D data only. However, because of using the thick layers and a sloping edge with the firstorder approximation between the top and bottom layers, VLM-Slicer requires surface reconstruction, mid-slice, and the toolpath data generation as well as 2D slicing. Surface reconstruction demands the connection between the two neighboring cross-sectional contours using the triangular facets. VLM-S employs thick layers with finite thickness, so that surface reconstruction is necessary to obtain a sloping angle of a side surface and the point data at a half of the sheet thickness. In the process of the toolpath data generation the surface reconstruction algorithm is expected to minimize the error between the ruled surface and the original parts..

Advanced PM Processes for Medical Technologies

  • Petzoldt, Frank;Friederici, Vera;Imgrund, Philipp;Aumund-Kopp, Claus
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.

Development of Inteligent Grinding System far High Performance Part (고기능성 부품가공용 지능형 연삭시스템 연구개발 현황)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.46-51
    • /
    • 2002
  • A grinding technology is very essential to finish the surface of IT and BT industrial application parts such as wafer, optical connection part and lenses etc. However the finding machine has bead depended on imports. Especially, it is completely imported for machining high precision part relevant to domestic electric and communicational industries. The amount to import grinding machine is about $110milions. It takes about 35% of total import amount of all the machine tools. A domestic finder manufacturer is a very small-scaled bussinessman and research facilities is poor. Recently, it is increasing to demand high speed and precision grinding technology because it brings cost down and value added up. Its further study will be something related to inteligent grinding system fur value added and high precision part. It will make domestic grinding technology to its advanced country level.

  • PDF

A Study on the Machinability of High Hardness Steel in Ball End Milling (볼 엔드밀 가공에서 고경도 강재의 절삭특성에 관한 연구)

  • Won S. T.;Hur J. H.;Lee Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.11-18
    • /
    • 2002
  • The STD11 and KP4 are important steels and applied to the manufacturing of the die and mold. The purpose of this study is to investigate the machinability of tool steels of STD11(HRC60) and KP4(HRC32) when machining them by using ball end milling tools coated with TiAlN. Cutting forces by using a Kistler piezo-cell type tool dynamometer, surface roughness and tool wear by using tool microscope are used in the tests. The results from the cutting tests of KP4 specimens show that 85m/min. of cutting speed and 0.32mm/rev. of feed per revolution are optimum conditions for the higher productivity and 0.26mm/rev. with the same cutting speed are optimum conditions for better surface finishing. The results from machining STD11 workpiece at 30m/min. of cutting speed and 0.17m/rev. of feed per revolution show recommended for the higher productivity. The KP4 shows relatively smaller cutting forces than STD11 and STD11 shows the better surface finish than KP4.

  • PDF

Nano-precision Polishing of CVD SiC Using MCF (Magnetic Compound Fluid) Slurry

  • Wu, Yongbo;Wang, Youliang;Fujimoto, Masakazu;Nomura, Mitsuyoshi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • CVD SiC is a perfect material used for molds/dies in hot press molding of glass lens. In its fabrication process, nano-precision polishing is essential finally. For this purpose, a novel polishing method using MCF (Magnetic Compound Fluid) slurry is proposed. In this method, MCF slurry is supplied into a given gap between the workpiece and a MCF slurry carrier, and constrained within the polishing zone by magnetic forces from permanent magnet. In this paper, after an experimental rig used to actually realize the proposed method has been constructed, the fundamental polishing characteristics of CVD SiC such as the effects of process parameters including MCF slurry composition on work-surface roughness were experimentally investigated. As a result, nano-precision surface finish of CVD SiC was successfully attained with MCF slurry and the optimum process parameters for obtaining the smoothest work-surface were determined.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

Tool Trajectory of Ball-End Mill in Consideration of Deflection when Pencil Cutting (펜슬가공시 공구변형을 고려한 볼엔드밀이 가공 궤적)

  • 윤경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-93
    • /
    • 1997
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable for the machining of free-form surface. Pencil cutting can eliminate overload in uncut area caused by large diameter of ball-end mill before finish cutting. As the ball-end mill for pencil cutting is long and thin, it is easily deflected by cutting force. The tool deflection when pencil cutting is one of the main reason of the machining errors on a free-from surface. The purpose of the research is to find out the characteristics of deflected cutter trajectory by eddy-current sensor.

  • PDF

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

The Deburring of the Actuator Arm of HDD for PC (PC용 HDD의 Actuator Arm 디버링)

  • 박동삼;최영현;강대규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.155-160
    • /
    • 2003
  • It is very important to make an intensive control of burr and surface roughness in the actuator arm of HDD for personal computer. There are two finishing techniques for actuator arm mechanical and chemical method. Centrifugal barrelling and magnetic deburring are mechanical methods, and electrolysis finish is a chemical method. Centrifugal barrelling and magnetic deburring are widely used due to the excellence in convenience and mass production. In this study, characteristics of surface roughness and deburring effect in magnetic deburring and centrifugal barrelling are investigated, and their performance of finishing is compared.

  • PDF