• Title/Summary/Keyword: Surface Exploration

Search Result 541, Processing Time 0.021 seconds

2 Dimensional FEM Elastic Wave Modeling Considering Surface Topography (불규칙 지형을 고려한 2차원 유한요소 탄성파 모델링)

  • Lee, Jong-Ha;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.34-44
    • /
    • 2001
  • Forward modeling by construction of synthetic data is usually practiced in a horizontal surface and a few subsurface structures. However, in-situ surveys often take place in such topographic changes that the corrupted field data always make it difficult to interpret the right signals. To examine the propagation characteristic of elastic waves on the irregular surface, a general mesh generation code for finite element method was modified to consider the topography. By implementing this algorithm, the time domain modeling was practiced in some models with surface topography such as mound, channel, etc. The synthetic data obtained by receivers placed on surface also agreed with the analytic solution. The snapshots showing the total wave-field revealed the propagation characteristic of the elastic waves through complex subsurface structures and helped to identify the signals on the time traces. The transmission of Rayleigh waves along the surface, compressive waves, and sheer waves was observed. Moreover, it turned out that the Rayleigh waves behave like a new source at the edge.

  • PDF

A Measure for Evaluating the Effect of Blocking in Response Surface Designs Using Cuboidal Regions (입방형 영역을 사용한 반응표면계획에서 블록효과를 평가하기 위한 측도)

  • 박상현;장대흥
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.59-79
    • /
    • 1999
  • The fitting of a response surface model and the subsequent exploration of the response surface are usually based on the assumption that the experimental runs are carried out under homogeneous conditions. This, however, may be quite often difficult to achieve in many experiments. To control such an extraneous source of variation, the response surface design should be arranged in several blocks within which homogeneity of conditions can be maintained. In this case, when fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance. In this paper, we propose a measure for evaluating the effect of blocking of response surface designs using cuboidal regions.

  • PDF

Analysis of Regional Potential Mapping Factors of Metal Deposits using Machine Learning (머신러닝을 이용한 광역 금속 광상 배태 잠재성 평가 인자 분석)

  • Park, Gyesoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The genesis of ore bodies is a very diverse and complex process, and the target depth of mineral exploration increases. These create a need for predictive mineral exploration, which may be facilitated by the advancement of machine learning and geological database. In this study, we confirm that the faults and igneous rocks distributions and magnetic data can be used as input data for potential mapping using deep neural networks. When the input data are constructed with faults, igneous rocks, and magnetic data, we can build a potential mapping model of the metal deposit that has a predictive accuracy greater than 0.9. If detailed geological and geophysical data are obtained, this approach can be applied to the potential mapping on a mine scale. In addition, we confirm that the magnetic data, which provide the distribution of the underground igneous rock, can supplement the limited information from the surface igneous rock distribution. Therefore, rather than simply integrating various data sets, it will be more important to integrate information considering the geological correlation to genesis of minerals.

Application of Geophysical Exploration Technique to the Identification of Active Weak Zones in Large Scale Mountainous Region (대규모 산지지반 활동연약대 규명을 위한 지구물리탐사기법의 활용 연구)

  • Shin, Hyung Ohk;Kim, Man-Il;Yoon, Wang Joong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2018
  • The purpose of this study is to understand the ground change of large scale mountainous region and to estimate the active weak zone using geophysical exploration (electrical resistivity and refraction seismic explorations) in large scale deep landslide area located in Wanjugun, Jeollabukdo. We also analyzed the characteristics of deep landslides occurred in metamorphic rocks region and confirmed the approximate scale. As a result of comparative analysis of N-value by standard penetration test (SPT), low resistivity anomaly, and tension crack identified from field investigation, a discontinuity in soil layer was estimated at 10 ~ 15 m below the surface. Based on this results, the distribution pattern of active weak zone was confirmed between the discontinuity in soil layer and estimation line of bedrock.

Reverse-time Migration using Surface-related Multiples (자유면 기인 겹반사파를 이용한 거꿀시간 참반사 보정)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • In the traditional seismic processing, multiple reflections are treated as noise and therefore they are eliminated during data processing. Recently, however, many studies have begun to consider multiples as signals rather than noise for seismic imaging. Multiple reflections can illuminate an area where primary reflections are not able to cover, thus it is allowed that a smaller number of shots and receivers are used for imaging large areas. In order to verify this, surface-related multiples were used for reverse-time migration (RTM), and then we compared the results with conventional RTM images which are generated from primary reflections. To utilize multiples, we separated multiples from whole seismic data using surface-related multiple elimination (SRME) method. Numerical examples confirmed that the migration using multiples can image wider area than the conventional migration, particularly in the shallow subsurface layers. In addition, the migration of multiples could eliminate the acquisition footprints.

A Numerical Study on the Effect of Near Surface Inhomogeneity on Rayleigh Wave Propagation and Dispersion (천부 불균질대에 의한 레일리파 전파 및 분산특성 고찰)

  • Lee, Sang-Min;Park, Kwon-Gyu;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.148-154
    • /
    • 2006
  • The effect of small-scale near surface inhomogeneity on Rayleigh wave propagation and dispersion has been investigated in this study using two-dimensional FEM elastic modeling. Various inhomogeneity models with a variety of geometrical shape and embedment depth which exist in homogeneous half-space and two-layered media are considered. Results show that any near surface inhomogeneity greater than one wavelength in terms of minimum wavelength of Rayleigh wave shows dispersion characteristics. Such dispersion effect become stronger as the dimensions of the inhomogeneity increase. The effect of horizontal dimension is more dominant factor governing the dispersion characteristics than vertical dimension. However, the dispersion effect can not be identifiable in seismogram if the horizontal dimension is not wide enough. Nonetheless, even in this case, the existence of inhomogeneity can be inferred by the reflection or transmission event of Rayleigh wave. The results can be expected to provide insights on the behavior of Rayleigh wave which may be helpful for designating field work or new processing scheme to detect near surface inhomogeneity by surface wave method.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

A Study on Generating Virtual Shot-Gathers from Traffic Noise Data (교통차량진동 자료에 대한 최적 가상공통송신원모음 제작 연구)

  • Woohyun Son;Yunsuk Choi;Seonghyung Jang;Donghoon Lee;Snons Cheong;Yonghwan Joo;Byoung-yeop Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.229-237
    • /
    • 2023
  • The use of artificial sources such as explosives and mechanical vibrations for seismic exploration in urban areas poses challenges, as the vibrations and noise generated can lead to complaints. As an alternative to artificial sources, the surface waves generated by traffic noise can be used to investigate the subsurface properties of urban areas. However, traffic noise takes the form of plane waves moving continuously at a constant speed. To apply existing surface wave processing/inversion techniques to traffic noise, the recorded data need to be transformed into a virtual shot gather format using seismic interferometry. In this study, various seismic interferometry methods were applied to traffic noise data, and the optimal method was derived by comparing the results in the Radon and F-K domains. Additionally, the data acquired using various receiver arrays were processed using seismic interferometry, and the results were compared and analyzed to determine the most optimal receiver array direction for exploration.