• Title/Summary/Keyword: Surface Expansion

Search Result 1,004, Processing Time 0.025 seconds

Track Stability Assessment for Deep Excavations in Adjacent to Urban Railways (도시철도 인접지반 깊은 굴착 시 궤도 안정성 평가)

  • Jeon, Sang-Soo;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.614-627
    • /
    • 2018
  • Urban railway lines have been constructed adjacent to residential buildings and urban areas. The expansion of transportation networks and reconstruction of residential buildings in highly populated urban areas require deep excavations in areas adjacent to urban railways. Mobilized soil stresses and changes in the groundwater level induced by deep excavations results in track irregularities in urban railways. In this study, a three-dimensional finite difference model using the commercial program FLAC3D was adopted to estimate the horizontal displacements of earth retaining structures, settlements of backfill, the stability of track irregularity and underground box structure based on the criteria of each railway organization and its relationships. In deep excavations, a change in groundwater level induces relatively very small differences for track gauge irregularities, whereas relatively large differences for longitudinal irregularities of 72.5%, twist irregularities of 83.3%, cross level irregularities of 61.9%, and alignments of 43.3% were found to be the maximum differences when the horizontal displacement of earth retaining wall and settlement of backfill were 65.1% and 21.4%, respectively, because the groundwater level (GWL) on the ground surface-mobilized tensile strength of the underground box structure exceeds the allowable value. Therefore, three-dimensional numerical analysis was performed in this study. Overall, real-time monitoring should be carried out to prevent railway accidents in advance when a deep excavation adjacent to urban railway structures is constructed.

Deterioration of the Rock-carved Seated Buddha at Golguram Hermitage, Gyeongju and Effect of the Ethylsilicate Consolidant (경주 골굴암 마애여래좌상 구성암석의 손상과 에틸실리케이트 암석강화제의 효과)

  • Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.71-81
    • /
    • 2017
  • Rock properties and the effects of chemicals that were used for conservation were studied for effective conservation treatment of Seated Buddha rock carving, which is composed of grayish white tuff, at Golguram Hermitage, Gyeongju. The rocks contain 3-5% montmorillonite, a swelling mineral and reacting with water, the d spacing of swelling minerals was increased (1.54-2.69%). On the one hand, the physical properties of the rock samples, such as surface hardness, water absorption rate, and porosity improved after the application of ethyl silicate-based stone strengthener. On the other, the interlayer of swelling minerals decreased and greater the of swelling mineral content, the greater is the extent of swelling (4.23-12.12%). When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, the physical properties were similar to those of the stone strengthener alone. There was no interlayer spacing change of swelling minerals due to swelling inhibition treatment; however, when the stone strengthener was applied after the swelling inhibitor, interlayer changes were similar to those when only the stone strengthener was treated (4.10-11.85%). Though the peak intensity of swelling minerals in X-ray diffraction pattern decreased, the effect of the swelling inhibitor was almost negligible. Therefore, it is not appropriate to use ethyl silicate-based stone strengthener for Golgulam rock containing swelling minerals and supplementing them with a swelling inhibition system is not effective. Because weathering rapidly progresses when swelling minerals contact moisture, for now, measures to prevent water contact, such as expansion of the canopy, are needed in the lower and side parts of the carving.

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Thermodynamic Characteristics of Snowfall Clouds using Dropsonde Data During ICE-POP 2018 (ICE-POP 2018 기간 드롭존데 자료를 활용한 강설 구름의 열역학적 특성)

  • Jung, Sueng-Pil;Lee, Chulkyu;Kim, Ji-Hyoung;Yang, Hyo Jin;Yun, Jong Hwan;Ko, Hee Jong;Hong, Seong-Eun;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2020
  • The aircraft observation campaign was performed to investigate thermodynamic conditions of snowfall cloud over the East Sea of Korean peninsula from 2 February to 16 March 2018. During this period, four snowfall events occurred in the Yeongdong region and three cases were analyzed using dropsonde data. Snowfall cases were associated with the passage of southern low-pressure (maritime warm air mass) and expansion of northern high-pressure (continental polar air mass). Case 1 and Case 2a were related to low-pressure systems, and Case 2b and Case 3 were connected with high-pressure systems, respectively. And their thermodynamic properties and horizontal distribution of snowfall cloud were differed according to the influence of the synoptic condition. In Case 1 and Case 2a, atmospheric layers between sea surface and 350 hPa contained moisture more than 15 mm of TPW with multiple inversion layers detected by dropsonde data, while the vertical atmosphere of Case 2b and Case 3 were dry as TPW 5 mm or less with a single inversion inversion layer around 750~850 hPa. However, the vertical distributions of equivalent potential temperature (θe) were similar as moist-adiabatically neutral condition regardless of the case. But, their values below 900 hPa were about 10 K higher in Case 1 and Case 2a (285~290 K) than in Case 2b and Case 3 (275~280 K). The difference in these values is related to the characteristics of the incoming air mass and the location of the snowfall cloud.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

Phloroglucinol Inhibits the in vitro Differentiation Potential of CD34 Positive Cells into Endothelial Progenitor Cells

  • Kwon, Yi-Hong;Lee, Jun-Hee;Jung, Seok-Yun;Kim, Jae-Won;Lee, Sang-Hun;Lee, Dong-Hyung;Lee, Kyu-Sup;Lee, Boo-Yong;Kwon, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.158-164
    • /
    • 2012
  • Inhibiting the bioactivities of circulating endothelial progenitor cells (EPCs) results in significant inhibition of neovessel formation during tumor angiogenesis. To investigate the potential effect of phloroglucinol as an EPC inhibitor, we performed several in vitro functional assays using $CD34^+$ cells isolated from human umbilical cord blood (HUCB). Although a high treatment dose of phloroglucinol did not show any cell toxicity, it specifically induced the cell death of EPCs under serum free conditions through apoptosis. In the EPC colony-forming assay (EPC-CFA), we observed a significant decreased in the small EPC-CFUs for the phloroglucinol group, implying that phloroglucinol inhibited the early stage of EPC commitment. In addition, in the in vitro expansion assay using $CD34^+$ cells, treatment with phloroglucinol was shown to inhibit endothelial lineage commitment, as demonstrated by the decrease in endothelial surface markers of EPCs including $CD34^+$, $CD34^+/CD133^+$, $CD34^+/CD31^+$ and $CD34^+/CXCR4^+$. This is the first report to demonstrate that phloroglucinol can inhibit the functional bioactivities of EPCs, indicating that phloroglucinol may be used as an EPC inhibitor in the development of biosafe anti-tumor drugs that target tumor angiogenesis.

A Study of the Velocity Distribution and Vorticity Measurement in the Pump Sump Using PIV (PIV를 이용한 흡수조 내 유속분포 및 와류강도 측정에 대한 연구)

  • Byeon, Hyun Hyuk;Kim, Seo Jun;Yoon, Byung Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The climate change occurring all over the world increases the risk, specially in urban area, Accordingly, rainwater pumping station expansion is required than before. In order to increase the efficiency of the rainwater pumping station, the analysis of flow characteristics in the pump sump is needed for vortex control. Many efforts have been made to illuminate the vortex behavior using PIV, but any reliable results have not been obtained yet, because of the limitations in image capturing and dependency of measured velocity values on the interrogation area and time interval used for velocity calculation. In this study, therefore, experiments were carried out to find out the limitation of PIV and estimate the validation of the velocity values associated with the analysis parameters such as interrogation area, time interval, grid size. For the experimental condition used in this study, the limitation of PIV and the effects of parameters on the velocity estimation are presented.

Structure and Distribution of Vegetation and Their Implications for the Conservation in the Gonggeomji Wetland Protection Area, South Korea (공검지 습지보호지역의 식생 구조와 분포 및 보전을 위한 제안)

  • Lee, Cheolho;Kim, Hwirae;Park, So Hyun;Chu, Yeounsu.;Yoon, Jungdo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.267-276
    • /
    • 2019
  • The Gonggeomji Reservoir is a historical irrigation facility built in the 8th century and designated as a wetland protected area by Ministry of Environment, Korea. In order to collect the baseline data necessary for developing a sustainable conservation strategy, we investigated the classification of actual vegetation, the vegetation distribution and the floristic structure of the vegetation in the Gonggeomji Wetland Protection Area. In the whole protection area, a total of 26 plant communities were classified including the wetland, riparian, grassland, forest, farmland, and orchard vegetation. According to the results of detrended correspondence analysis, the structure of wetland vegetation was mainly affected by water depth and human disturbance. In reservoir wetlands, floating vegetation such as Utricularia vulgaris var. japonica, Trapa japonica, and emergent vegetation such as Nelumbo nucifera, Typha spp. completely covered the water surface. Since 2014, the reservoir wetland has been terrestrialized with the expansion of emergent and hygrophytic plants. For the sustainable conservation and restoration of wetland protected areas, it is necessary to naturalize the topography and wetland vegetation, recovery the hydrologic system, and restore ecosystem connectivity from wetlands to forests.

Fine Structural Approach of Granular Gland Regeneration after Skin Injury in Bombina orientalis (Bombina orientalis 피부손상 후 과립선 재생에 관한 미세구조적 연구)

  • Jeong, Moon-Jin;Lim, Do-Seon;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.275-284
    • /
    • 2002
  • Granular gland regeneration in the toad after dorsal skin wound histologically was examined using scanning and transmission electron microscopy. After cutaneous wounds were induced by excision, animals were maintained in special cages for up to 20 days. In transmission electron microscopy (TEM), newly formed granular gland, though poorly developed, was seen on 4 day after injury. Epithelial cells moved toward apical region of newly formed gland. The cells had smooth surface and were not connected to other cells by desmosomes. Mitochondria rich cell (MRC) possessing long cytoplasmic processes formed a gland cavity and hemidesmosomes were found under the cell processes. Basal cavity of newly formed gland consisted of MRC, pro-granular producing cells (pGPC), and granular producing cell (GPC). Moreover it was observed that xanthophores moved to the base of the epithelial tissue on 10 day after the injury. These cells contained numerous pterinosomes and carotenoid vesicles. Immature pterinosomes were large and carotenoid vesicles were moderately electron dense. On 13 day after the injury, xanthophores contained abundant carotinoid vesicles and lammelated pterinosomes. Iridophores were also observed adjacent the developing xanthophores on 16 day post-injury. These observations indicated that regeneration of granular gland from glandular precursor cells during wound healing and subsequent expansion of the glandular cells might be dependent on maturation and proliferation of these newly formed cells.

A Study on the Durability Improvement by Controlling the Deterioration of Underground Concrete Structures (지하 콘크리트구조물의 열화 억제에 의한 내구성 증진에 관한 연구)

  • 천병식;최춘식;정원우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.23-31
    • /
    • 2004
  • Normally, coating is used for protecting reinforced concrete. For this purpose, both organic and inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2, SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, organic coatings such as epoxy, urethane and acryl reduce long-term adhesive strength by the difference of their thermal expansion coefficients and elastic modules from those of concrete, and the formed coating cover of these is blistered by poor breathing. Also, when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. In this study, a new coating material for protecting concrete was hybridized with polymer and ceramics. And tests were carried out on its physical and durable characteristics, and safety characteristic on elution. All results were compared with organic coating materials and epoxies and showed that the performance of the developed coating material was not inferior to that of other organic coatings in protecting concrete. On the other hand, safety characteristic on elution was superior to epoxies which were used in this study. So, the developed coating material was considered as a suitable protecting coating material which have advantages of inorganic and organic coatings for protecting underground concrete structures, especially in contact with water.