• Title/Summary/Keyword: Surface Enhancement

Search Result 1,200, Processing Time 0.029 seconds

CRITICAL HEAT FLUX ENHANCEMENT

  • Chang, Soon-Heung;Jeong, Yong-Hoon;Shin, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.753-762
    • /
    • 2006
  • In this paper, works related to enhancement of the CHF are reviewed in terms of fundamental mechanisms and practical applications. Studies on CHF enhancement in forced convection are divided into two categories, CHF enhancement of internal flow in tubes and enhancement of CHF in the nuclear fuel bundle. Methods of enhancing the CHF of internal flows in tubes include enhancement of the swirl flow using twisted tapes, a helical coil, and a grooved surface; promotion of flow mixing using a hypervapotron; altering the characteristics of the heated surface using porous coatings and nano-fluids; and changing the surface tension of the fluid using additives such as surfactants. In the fuel bundle, mixing vanes or wire wrapped rods can be employed to enhance the CHF by changing the flow distributions. These methods can be applied to practical heat exchange systems such as nuclear reactors, fossil boilers, fusion reactors, etc.

Contrast Enhancement Technique by Intensity Surface Stretching (명도 표면 스트레칭에 의한 화질 개선 기법)

  • Kim, Do-Hyeon;Jung, Ho-Young;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2398-2405
    • /
    • 2007
  • This paper proposes a contrast enhancement technique which stretches the intensity surfaces of image to improve the quality of the digital photos. The proposed method enhances the contrast of image by stretching the intensity surface of the original image to the maximum range of the output image in proportion to the distances between the original intensity surface and upper, lower intensity surface, respectively. The upper and lower intensity surfaces are generated from the original intensity surface by gaussian smoothing. In the experiments, digital color images in a variety of illumination conditions were used and the proposed method was compared with other several existed image enhancement algorithms, which are histogram stretching, surface stretching, histogram equalization, gamma correction and retinex. It was proved that the experimental results were more natural visually without deterioration of gradation.

Excimer Laser Micromachining of Polymers Assisted by Liquid (액체 보조 방식의 Excimer 레이저 폴리머 미세가공)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhancement and particle removal from the surface. Although the ablation enhancement by liquid is already known for semiconductor and metal, the phenomena of polymer ablation have not been studied. In this work, tile liquid-assisted excimer laser ablation process is examined for polymer materials, such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) with emphasis on ablation enhancement and surface topography. In the case of PET and PMMA, the effect of liquid is analyzed both for thin water film and bulk water. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface topography is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF

THE EFFECT OF MICRO/NANOSCALE STRUCTURES ON CHF ENHANCEMENT

  • Ahn, Ho-Seon;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Recently, many research studies have investigated the enormous critical heat flux (CHF) enhancement caused by nanofluids during pool boiling and flow boiling. One of the main reasons for this enhancement is nanoparticle deposition on the heated surface. However, in real applications, nanofluids create many problems when used as working fluids because of sedimentation and aggregation. Therefore, artificial surfaces on silicon and metal have been developed to create an effect similar to that of nanoparticle deposition. These modified surfaces have proved capable of greatly increasing the CHF during pool boiling, and good results have also been observed during flow boiling. In this study, we demonstrate that the wetting ability of a surface, i.e., wettability, and the liquid spreading ability (hydrophilic surface property), are key parameters for increasing the CHF during both pool and flow boiling. We also demonstrate that when the fuel surface in nuclear power plants is modified in a similar manner, it has the same effect, producing a large CHF enhancement.

Enhanced Boiling Heat Transfer of Water Using Multi-Stage Electroplating Technique (전기 다단 도금법을 이용한 물의 핵비등열전달 촉진 실험)

  • Cho, Dae-Gwan;You, Seung-Mun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1590-1596
    • /
    • 2003
  • The experiments of boiling heat transfer were performed to investigate the boiling enhancement in saturated water by using multi-stage electroplated surface. In order to optimize the boiling performance, current flux and duration in multi-stage electroplating were varied. Current flux, 2 $A/12cm^2$ and 0.33 $A/cm^2$, and duration ranging from 15 second to 50 second are considered. The results showed that multi-stage electro plated surfaces generate enhancement of boiling parameters such as boiling incipient superheat, boiling heat transfer coefficient, and critical heat flux compared to plain surface. The SEM images of the coated surfaces were captured to examine the structure of porous surface, which provides the enhancement of boiling heat transfer.

  • PDF

Influence of surfactant on heat transfer of air-cooled vertical absorber (공냉식 수직 흡수기의 열전달에 미치는 계면활성제의 영향)

  • 윤정인;권오경;문춘근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.740-748
    • /
    • 1999
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes were a bare inner surface, groove inner surface, corrugated inner surface and spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of film Reynolds number in the range of 20~200. Experiments were tarried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with cases without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

  • PDF

Strongly Enhanced Electric Field Outside a Pit from Combined Nanostructure of Inverted Pyramidal Pits and Nanoparticles

  • Meng Wang;Wudeng Wang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.562-568
    • /
    • 2023
  • We designed a combined nanostructure of inverted pyramidal pits and nanoparticles, which can obtain much stronger field enhancement than traditional periodic pits or nanoparticles. The field enhancement |E|/|E0| is greater than 10 in a large area at 750-820 nm in incident wavelength. |Emax|/|E0| is greater than 60. Moreover, the hot spot is obtained outside the pits instead of localized inside them, which is beneficial for experiments such as surface-enhanced Raman scattering. The relations between resonant wavelength and structural parameters are investigated. The resonant wavelength shows a linear dependence on the structure's period, which provides a direct way to tune the resonant wavelength. The excitation of a propagating surface plasmon on the periodic structure's surface, a localized surface plasmon of nanoparticles, and a standing-wave effect contribute to the enhancement.

Enhancement of Light Extraction Efficiency of GaN Light Emitting Diodes Using Nanoscale Surface Corrugation (나노크기 표면 요철을 이용한 GaN LED의 광추출효율 향상)

  • Jung, Jae-Woo;Kim, Sarah;Jeong, Jun Ho;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.636-641
    • /
    • 2012
  • In this study, we have investigated highly efficient nanoscale surface corrugated light emitting diodes (LEDs) for the enhancement of light extraction efficiency (LEE) of nitride semiconductor LEDs. Nanoscale indium tin oxide (ITO) surface corrugations are fabricated by using the conformal nanoimprint technique; it was possible to observe an enhancement of LEE for the ITO surface corrugated LEDs. By incorporating this novel method, we determined that the total output power of the surface corrugated LEDs were enhanced by 45.6% for patterned sapphire substrate LEDs and by 41.9% for flat c-plane substrate LEDs. The enhancement of LEE through nanoscale surface corrugations was studied using 3-dimensional Finite Different Time Domain (FDTD) calculation. From the FDTD calculations, we were able to separate the light extraction from the top and bottom sides of device. This process revealed that light extraction from the top and bottom sides of a device strongly depends on the substrate and the surface corrugation. We found that enhanced LEE could be understood through the mechanism of enhanced light transmission due to refractive index matching and the increase of light scattering from the corrugated surface. LEE calculations for the encapsulated LEDs devices also revealed that low LEE enhancement is expected after encapsulation due to the reduction of the refractive index contrast.

Effects of Surface Termination on Directional Emission from Photonic Crystal Waveguides

  • Chung, K.B.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • We numerically investigate by the finite-difference time-domain method the effects of surface termination on directional emission exiting a photonic crystal waveguide. The directed power and far-field beam profile for the original proposal [E. Moreno et al., Phys. Rev. B 69, 121402 (2004)] and its enhancement [S. K. Morrison et al., Appl. Phys. Lett. 86, 081110 (2005)] are computed for different values of some important parameters. We find another surface termination condition with a positive surface displacement in the structure of the original proposal which has a negative surface displacement. Our surface termination is more effective than the original structure, and nearly as effective as the termination for the enhancement, for directional emission. Besides, our termination is simpler than that for the enhancement. We confirm the effectiveness of directional emission from our termination in its far-field beam profile, radiation intensity distribution, and additionally the wave-vector space representation by the Fourier analysis.

Hole Mobility Enhancement in (100)- and (110)-surface of Ultrathin-body(UTB) Silicon-on-insulator(SOI) Metal Oxide Semiconductors Field Effect Transistor (Ultrathin-body SOI MOSFETs에서 면방향에 따른 정공의 이동도 증가)

  • Kim, Kwan-Su;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.939-942
    • /
    • 2007
  • We investigated the characteristics of UTB-SOI pMOSFETs with SOI thickness($T_{SOI}$) ranging from 10 nm to 1 nm and evaluated the dependence of electrical characteristics on the silicon surface orientation. As a result, it is found that the subthreshold characteristics of (100)-surface UTB-SOI pMOSFETs were superior to (110)-surface. However, the hole mobility of (110)-surface were larger than that of (100)-surface. Especially, the enhancement of effective hole mobility at the effective field of 0.1 MV/cm was observed from 3-nm to 5-nm SOI thickness range.