• Title/Summary/Keyword: Surface Discrete

Search Result 365, Processing Time 0.028 seconds

Experimental Study of Heat/Mass Transfer in Rotating Cooling Passages with Discrete Ribs (단락 요철이 설치된 내부 냉각유로에서 회전에 따른 열/물질전달 특성 연구)

  • Kim Kyung Min;Kim Sang In;Lee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.590-598
    • /
    • 2005
  • The present study has been conducted to investigate the effect of discrete ribs and rotation on heat/mass transfer characteristics in a two-pass square duct with $90^{\circ}-rib$ turbulators. The rib turbulator has a square cross section of 1.5 mm. The rib height-to-hydraulic diameter ratio $({e/D_{h})$ is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The gap width is the same as the rib height. The rotation number ranges from 0.0 to 0.2 while Reynolds number is fixed to 10,000. In a stationary duct, the heat/mass transfer on the surfaces with discrete ribs is enhanced because the gap flow promotes local turbulence and flow mixing near the ribbed surface. In a rotating duct, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, heat/mass transfer is increased due to the gap flow. On the trailing surface of the first pass, however, heat/mass transfer is decreased because the gap flow disturbs reattachment of main flow. The phenomenon, that is, the difference of heat transfer between the leading and the trailing surfaces is distinctly presented by rotation.

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;김충년;지승욱;박광서;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.183-187
    • /
    • 2000
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), both corona and surface discharge. Multiresolution analysis was used for performing discrete wavelet transform. PD signals was decomposed into "approximation" and "detail" components until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. The results show that in corona discharge the segment 7, 8, 9, 10, 11 values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric discharge pattern because coupled both corona and dielectric bounded discharges. We can confirmly discriminate the type PD source. the type PD source.

  • PDF

Solution of the Liner Free Surface Problem by a Discrete Singularity Method (집중특이점분포법을 이용한 선형자유표면문제의 해석)

  • Gang, Chang-Gu;Yang, Seung-Il;Lee, Chang-Seop
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowestorder concentrated (discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtaianed with a remarkable degree of accuracy. The linearized bounday valve problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above (not on) the free surface and the vortices on the body surface. Three sample calculations were performed; the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements, The final results are compared with those of the publi¬shed works, and are considered very satisfactory.

  • PDF

Solution of the Linear Free Surface Problem by a Discrete Singularity Method (집중특이점분포법(集中特異點分布法)을 이용(利用)한 선형자유표면문제(線型自由表面問題)의 해석(解析))

  • Chang-Gu,Kang;Seung-Il,Yang;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowest order concentrated(discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtained with a remarkable degree of accuracy. The linear boundary value problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above(not on) the free surface and the vortices on the body surface. Three sample calculation were performed` the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements. The final results are compared with those of the published works, and are considered very satisfactory.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

A study of correction dependent on process parameters for printing on 3D surface (3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song M.S.;Kim H.C.;Lee S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

Depth Control of an Autonomous Underwater Vehicle with System Uncertainties Based on Discrete Variable Structure System (이산 가변구조제어기를 이용한 자율무인잠수정의 심도제어)

  • 이판묵;홍석원;전봉환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 1997
  • This paper presents a discrete-time sliding mode control of an autonomous underwater vehicle with parameter uncertainties and long sample interval based on discrete variable structure system. Although conventional sliding mode montrol techniques are robust to system uncertainties, in the case of the system with long sample interval, the sliding control system reveals chattering phenomenon and even makes the system unstable. This paper considers the AUV which acquires position informations from a surface ship through an acoustic telemetry system with a certain discrete interval. The control system is designed on the basis of a Lyapunov function and a sufficient condition of the switching gain to make the system stable is give. Each component of the switching gain can be determined separately one another. The controller is robust to the uncertainties, and reaching condition of the control system is satisfied for any initial condition. This control law is a generalized form of the discrete sliding mode control and reduce the chattering problem considerably. Motion control of the AUV in the vertical plane shows the effectiveness of the proposed technique.

  • PDF

SEMI-DISCRETE CENTRAL DIFFERENCE METHOD FOR DETERMINING SURFACE HEAT FLUX OF IHCP

  • Qian, Zhi;Fu, Chu-Li
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1397-1415
    • /
    • 2007
  • We consider an inverse heat conduction problem(IHCP) in a quarter plane which appears in some applied subjects. We want to determine the heat flux on the surface of a body from a measured temperature history at a fixed location inside the body. This is a severely ill-posed problem in the sense that arbitrarily "small" differences in the input temperature data may lead to arbitrarily "large" differences in the surface flux. A semi-discrete central difference scheme in time is employed to deal with the ill posed problem. We obtain some error estimates which also give the information about how to choose the step length in time. Some numerical examples illustrate the effects of the proposed method.

A Study on Illumination Mechanism of Steel Plate Inspection Using Wavelet Synthetic Images (이산 웨이블릿 합성 영상을 이용한 철강 후판 검사의 조명 메커니즘에 관한 연구)

  • Cho, Eun Deok;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.26-31
    • /
    • 2018
  • In this paper, surface defects and typical illumination mechanisms for steel plates are analyzed, and then optimum illumination mechanism is selected using discrete wavelet transform (DWT) synthetic images and discriminant measure (DM). The DWT synthetic images are generated using component images decomposed by Haar wavelet transform filter. The best synthetic image according to surface defects is determined using signal to noise ratio (SNR). The optimum illumination mechanism is selected by applying discriminant measure (DM) to the best synthetic images. The DM is applied using the tenengrad-euclidian function. The DM is evaluated as the degree of contrast using the defect boundary information. The performance of the optimum illumination mechanism is verified by quantitative data and intuitive image looks.

Discrete-Time Sliding Mode Control for Linear Systems with Matching Uncertainties

  • Myoen, Kohei;Hikita, Hiromitsu;Hanajima, Naohiko;Yamashita, Mitsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.5-151
    • /
    • 2001
  • Sliding mode control is investigated for a discrete-time system with uncertainties. The narrowest neighborhood of the sliding surface is shown in which the state can remain. The range is determined by the upper bound of the absolute value of the uncertainty and the equation of the sliding surface. A sliding mode control algorithm is proposed to keep the state there without requiring an enormous input. Under the presence of the system parameter variations, the origin is not always stable although the sliding surface represents the stable dynamics and the state is kept in this neighborhood. The condition for the origin to be stable is investigated. Furthermore, the problems occurring when a continuous-time sliding mode control being ...

  • PDF