• Title/Summary/Keyword: Surface Contamination Level

Search Result 161, Processing Time 0.032 seconds

Assessment of Heavy Metal Pollution in Surface Sediments of the Yeongsan River (영산강 수계 표층 퇴적물의 금속류 분포 및 오염도 평가)

  • Yang, Hae Jong;Kang, Tae-Woo;Bong, Ki Moon;Jeong, Hyo Jin;Yang, Won Jun;Han, Jong Hak;Jung, Heejung;Hwang, Soon Hong;Kim, Kyunghyun
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.292-303
    • /
    • 2018
  • The particle sizes and heavy metal concentrations (Pb, Zn, Cu, Cd, Hg, As, Cr, Ni, Li, Al) of surface sediments of the Yeongsan River were analyzed to assess the distribution and pollution level of heavy metals. The distribution of particle sizes was dominated by sand in the upstream sites (MS1-MS7) and by silt loam in the downstream sites (MS8-ML3), but MS3 and MS6, located slightly upstream of the two weirs, were found to be loamy sand and silt loam, respectively. The concentrations of Pb, Zn, Cu, Cd and Hg were higher at the upstream sites, while As, Cr, Ni and Li were higher at the downstream sites. The heavy metals of crustal origin (As, Cr, Ni and Li) were strongly correlated with particle size, while the other heavy metals (Pb, Zn, Cu, Cd and Hg) were weakly correlated with particle size. Considering their concentrations, most of heavy metals were evaluated as having almost no toxic effects on benthic organisms, at all sites. In addition, anthropogenic contamination by the $I_{geo}$, EF and CF were found to have no impact at most sites, with only low levels of pollution at the others. Using the PLI method, the MS2 and MS3 sites, located upstream, were assessed to be affected by anthropogenic contamination. Most importantly, Zn, Cu and Hg were found to be the elements responsible for most pollution, and they were highest at the upstream sites, implying pollution by domestic sewage and urban discharge.

The Evaluation on Reuse Period of Patient's Clothes and Sheet After Radioiodine Therapy (방사성 요오드 치료환자의 환의 및 시트에 대한 재사용주기 평가)

  • Kim, Yeong Seon;Seo, Myung Deok;Lee, Wan Kyu;Kim, Ki Joon;Song, Jae Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.12-17
    • /
    • 2012
  • Purpose : The patient's clothes and sheet after radioiodine therapy must be disposed of by related regulation. That must be disposed of as radioactive wastes, but that is reusing after radioactivity decay by keeping for the certain period of time. In general, The minimum storage period calculate by standard of take radioactive substance out of radiation controlled area based on measured surface contamination level. But the measurements of surface contamination level are able to differ by measurement method. In this paper, I wish to calculate the minimum storage period of patient's clothes and sheet after radioiodine therapy by measure nuclide concentration offered by the regulation on self-disposal of radioactive wastes. Materials and Methods : The whole area of patient's clothes and sheet measured 31 patients(male:9 patients, female:22 patients), who had radioiodine therapy(3.7 GBq:13 patients, 5.55 GBq:16 patients, 7.4 GBq:2 patients) from july 2011 to march 2012. The minimum storage period is calculated by the regulation on self-disposal of radioactive waste(100 Bq/g) and standard of take radioactive substance out of radiation controlled area(4 kBq/m2) Results : The minimum storage period of pillow sheet, upper uniform, lower uniform by standard of take radioactive substance out of radiation controlled area were each 4.6 days, 63days, 78 days. The minimum storage period of pillow sheet, upper uniform, lower uniform by the regulation on self-disposal of radioactive waste were each 18.1 days, 43 days, 62 days. Conclusion : We can verify that patient's clothes and sheet after radioiodine therapy exists a great deal of radioactive contamination. The minimum storage period calculation of patient's clothes and sheet is better suited to applying nuclide concentration offered by the regulation on self-disposal of radioactive waste. I recommend, To keep for at least 2 months of the patient's clothes and sheet contaminated radioactivity, for prevent contamination and unnecessary radiation exposure.

  • PDF

Assessment of Bioaerosols in Public Restrooms (화장실 공기 중 미생물 분포 조사연구)

  • Kim, Jong-Gyu;Kim, A-Hyeok;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.304-312
    • /
    • 2014
  • Objectives: This study was performed to examine bioaerosols in indoor air in public restrooms, as well as to assess the effects of air temperature and relative humidity on bioaerosol levels. Methods: A cross-sectional survey was performed in ten male and ten female restrooms. An air sampler (Anderson type) was used for sampling total suspended bacteria (TSB), Gram-negative bacteria (GNB), Gram-positive bacteria (GPB), opportunistic bacteria (OP), Staphylococcus spp., and total suspended fungi (TSF). Results: The levels of TSB were $10-10^2CFU/m^3$ and TSF $10-10^2CFU/m^3$, respectively. The GNB level was $0-10CFU/m^3$, and GPB and OP levels were $10-10^2CFU/m^3$. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) were detected in 90% of the restrooms. The GPB level was higher in the female restrooms than in the male restrooms (p < 0.05). TSB, GNB, and TSF showed higher levels in restrooms in buildings over 30 years old (p < 0.01). The main effect of air temperature or relative humidity and interaction effect of the two factors on the TSB level were significant (p < 0.05), while the effect of relative humidity on the TSF level was significant (p < 0.001). Conclusions: These results indicate that there is a wide variation in the bioaerosol levels among different restrooms. The observed differences in bioaerosol levels reflect different building histories. The effects of air temperature and/or relative humidity reveal that bioaerosol levels may vary according to season or time of day. Future research is needed to further characterize the relation between the bioaerosol levels and surface contamination in restrooms.

Investigation of Hazards from Onions and Their Cultivation Areas to Establish a Good Agricultural Practices (GAP) Model (Good agricultural practices 모델 개발을 위한 양파 및 생산 환경에서의 위해요소 조사)

  • Choi, Young-Dong;Lee, Chae-Won;Kim, Jeong-Sook;Chung, Duck-Hwa;Shim, Won-Bo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.785-790
    • /
    • 2013
  • The purpose of this study was to investigate the hazards from onions and their cultivation areas. A total of 32 samples were collected from onion farms and tested for biological (sanitary indicators, and pathogenic bacteria and fungi) and chemical (heavy metals and pesticide residues) hazards. Aerobic bacteria and coliforms were detected at a level of 0.2-7.1 log CFU/g (or mL) in the soil and agricultural water, 1.6-3.6 log CFU/g on surface of the onion, 0.0-6.0 log CFU/hand (or $cm^2$) on the workers' hands, clothes, and gloves, and 4.7 log $CFU/cm^2$ on the onion bags. Fungi were detected at a level of 0.0-5.0 log CFU/g (or mL, hand, or 100 $cm^2$) in all the samples. Staphylococcus aureus was detected at a level of 1.2 log CFU/hand on the workers' hands, the detection level of Bacillus cereus was up to 4.8 log CFU/g in the soil. However, Escherichia coli (and in particular strain O157:H7), Listeria monocytogenes, and Salmonella spp. were not detected. Although heavy metals were detected in the environment (in soil and agricultural water) and pesticide residues were detected in onion, the levels were lower than the regulation limits.

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.

Development of Surface Cleaning Techniques for Analysis of Electronics Structure in CuInSe2, CuGaSe2 Solar Cell Absorber Layer (태양전지용CuInSe2와 CuGaSe2 흡수층의 전자구조해석을 위한 표면 청정기술 개발)

  • Kim, Kyung-Hwan;Choi, Hyung-Wook;Kong, Sok-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.125-129
    • /
    • 2005
  • Two kinds of physical treatments were examined for the analysis both of intrinsic surface and interior nature of CuInS $e_2$[CIS] and CuGaS $e_2$[CGS] films grown in separated systems. For the first method, a selenium protection layer which was immediately deposited after the growth of the CIS was investigated. The Se cap layer protects CISe surface from oxidation and contamination during the transport under ambient atmosphere. The Se cap was removed by thermal annealing at temperature above 15$0^{\circ}C$. After the decapping treatment at 2$25^{\circ}C$ for 60 min, ultraviolet photoemission and inverse photoemission measurements of the CIS film showed that its valence band maximum(VBM) and conduction band minimum (CBM) are located at 0.58 eV below and 0.52 eV above the Fermi level $E_{F}$, respectively. For the second treatment, an Ar ion beam etching was exploited. The etching with ion kinetic energy $E_{k}$ above 500 eV resulted in broadening of photoemission spectra of core signals and occasional development of metallic feature around $E_{F}$. These degradations were successfully suppressed by decreasing $E_{k}$ below 400 eV. CGS films etched with the beam of $E_{k}$ = 400 eV showed a band gap of 1.7 eV where $E_{F}$ was almost centered.st centered.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Chemical Speciation of Arsenic in the Water System from Some Abandoned Au-Ag Mines in Korea (국내 폐금은광산 주변 수계내의 As의 화학적 특성)

  • 이지민;이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.481-490
    • /
    • 2003
  • The objectives of this study are (1) to determine the extent and degree of As contamination of the water and sediments influenced by mining activity of the abandoned Au-Ag mines, (2) to examine As speciation In contaminated water, (3) to monitor variation of As contamination in water system throughout the dry and wet seasons, and (4) to investigate the As chemical form in the sediments through the sequential extraction analyses. Natural water(mine water, surface water and groundwater) and sediments were collected in six abandoned Au-Ag mine(Au-bearing quartz veins) areas. The contamination level of As in mine water of the Dongil(524${\mu}m$/L) is more higher than the tolerance level(500 ${\mu}m$/L) for waste water of mine area in Korea. Elevated levels of As in stream water were also found in the Dongil(range of 63.7∼117.6 ${\mu}m$/L.) and Gubong(range of 56.1∼62.9 ${\mu}m$/L) mine areas. Arsenic contamination levels in groundwater used by drinking water were more significant in the Dongil(11.3∼63.5 ${\mu}m$/L), Okdong(0.2∼68.9 ${\mu}m$/L) and Gubong(2.0∼101.0${\mu}m$/L) mine areas. Arsenate[As(V), $H_2AsO_4^-$] is more dominant than arsenite[As(III), $H_3AsO_3$] in water system of the most mine areas. The concentration ratios of As(III) to As(total), however, extend to the 95% in stream water of the Okdong mine area and 70∼82% in groundwater of the Okdong and Dongjung mine areas. As a study of seasonal variation in the water system, relatively high levels of As from the dongil mine area were found in April rather than in September. Sequential extraction analysis showed that As was predominantly present as coprecipitated with Fe hydroxides from sediment samples of the Dongjung and Gubong mine(35.9∼40.5%), which indicates its possibility of re-extraction and inducing elevated contamination of As in the reductive condition. In sediments from the Dongil, Okdong and Hwachon mine area, high percentage(55.2∼83.4%) of As sulfide form was found.

Evaluation of Residual Radiation and Radioactivity Level of TRIGA Mark-II, III Research Reactor Facilities for Safe Decommissioning (TRIGA Mark-II, III 연구로 시절의 폐로를 위한 시설의 잔류 방사선/능 평가)

  • Lee, B.J.;Chang, S.Y.;Park, S.K.;Jung, W.S.;Jung, K.J.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.109-120
    • /
    • 1999
  • Residual radiation and radioactivity level in TRIGA Mark-II, III research reactors and facilities at the KAERI Seoul site, which are to be decommissioned, have been measured, analyzed and evaluated to know the current status of radiation and radioactivity level and to establish and to provide the technical requirements for the safe decommissioning of the facilities which shall be applied in minimizing the radiation exposure for workers and in preventing the release of the radioactive materials to the environment. Radiation dose rate and surface radioactivity contamination level on the experimental equipments, floors, walls of the facilities, and the surface of the activated materials within the reactor pool structure were measured and evaluated. Radioactivity and radionuclides in the pool and cooling water were also analyzed. In case of the activated reactor pool structures which are very difficult to measure the radiation and radioactivity level, a computer code Fispin was additionally used for estimation of the residual radioactivity and radionuclides. The radiation and radioactivity data obtained in this study were effectively used as basic data for decontamination and dismantling plan for safe decommissioning of TRIGA Mark-II, III facilities.

  • PDF