• 제목/요약/키워드: Surface Area of Plasma

검색결과 259건 처리시간 0.025초

혈소판 농축혈장이 임플랜트 주위 골결손부 재생에 미치는 영향 (The Effects of Platelet-Rich Plasma on Regeneration around Dental Implant Defects)

  • 홍기석;임성빈;정진형;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.673-691
    • /
    • 2003
  • The current interest in periodontal tissue regeneration has lead to research in bone graft, root surface treatments, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. Several studies have shown that a strong correlation between platelet-rich plasma and the stimulation of remodeling and remineralization of grafted bone exists, resulting in a possible increase of 15-30% in the density of bone trabeculae. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and a bone xenograft used in conjunction with a non-resorbable guided-tissue membrane, e-PTFE, compared to a control group with regards to bone regeneration at the implant fixture site. Implant fixtures were inserted and graft materials placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2 , 4, and 8 weeks after implant fixture insertion. The results of the experiment are as follows: 1. The rate of osseointegration to the fixture threads was found to be greater in the first experimental group compared to the control group. 2. The histopathological findings of the second experimental group showed rapid resorption of BBP with subsequent new bone formation replacing the resorbed BBP. 3. The second experimental group showed new bone formation in the area adjacent to the fixture threads beginning two weeks after fixture implantation, with continued bone remodeling in the areas mesial and distal to the fixture. 4. Significant new bone formation and bone remodeling was observed in both experimental groups near the implant fixture sites. 5. The rate of osseointegration at the fixture threads was greater in the second experimental group compared to the first group, and the formation of new bone and trabeculae around the fixture site occurred after the fourth week in the second experimental group. The results of the experiment suggest that a greater degree of new bone formation and osseointegration can occur at the implant fixture site by utilizing platelet-rich plasma and bone xenografts, and that these effects can be accelerated and enhanced by concurrent use of a non-resorbable guided tissue membrane.

$TiO_2$ 입자 크기에 따른 염료감응태양전지의 성능 변화 ($TiO_2$ Particle Size Effect on the Performance of Dye-Sensitized Solar Cell)

  • 김바울;박미주;이성욱;최원석;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.145-146
    • /
    • 2007
  • Dye-Sensitized Solar Cell Solar cells(DSSC) were appeared for overcoming global environmental problems and lack of fossil fuel problems. And it is one of study field that is getting into the spotlight lately because manufacturing method is more simple and inexpensive than existing silicon solar cells. Oxide semiconductor is used for adsorption of dye and electron transfer in DSSC study, and $TiO_2$ is used most usually. Overall light conversion efficiency is changed by several elements such as $TiO_2$ particle size and structure, pore size and shape. In this study, we report the solar cell performance of titania$(TiO_2)$ film electrodes with various particle sizes. $TiO_2$ particle size was 16 nm, 25 nm, and mixture of 16nm and 25 nm, and manufactured using Doctor blade method. When applied each $TiO_2$ film to DSSC, the best efficiency was found at 16nm of $TiO_2$ particle. 16nm of $TiO_2$ particle has the highest efficiency compared to the others, because particles with smaller diameters would adsorb more dye due to larger surface area. And in case of the mixture of 16nm and 25 nm, the surface area was smaller than expected. It is estimated that double layer is adsorbed a large amount of chemisorbed dye and improved light scattering leading due to efficiency concentration light than mono layer.

  • PDF

Ar/$CHF_3$ 플라즈마를 이용한 SBT 박막에 대한 식각특성 연구 (Etching characteristic of SBT thin film by using Ar/$CHF_3$ Plasma)

  • 서정우;이원재;유병곤;장의구;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.41-43
    • /
    • 1999
  • Among the feffoelectric thin films that have been widely investigated for ferroelectric random access memory (FRAM) applications, SrBi$_2$Ta$_2$$O_{9}$ thin film is appropriate to memory capacitor materials for its excellent fatigue endurance. However, very few studies on etch properties of SBT thin film have been reported although dry etching is an area that demands a great deal of attention in the very large scale integrations. In this study, the a SrBi$_2$Ta$_2$$O_{9}$ thin films were etched by using magnetically enhanced inductively coupled Ar/CHF$_3$ plasma. Etch properties, such as etch rate, selectivity, and etched profile, were measured according to gas mixing ratio of CHF$_3$(Ar$_{7}$+CHF$_3$) and the other process conditions were fixed at RF power of 600 W, dc bias voltage of 150 V, chamber pressure of 10 mTorr. Maximum etch rate of SBT thin films was 1750 A77in, under CHF$_3$(Ar+CHF$_3$) of 0.1. The selectivities of SBT to Pt and PR were 1.35 and 0.94 respectively. The chemical reaction of etched surface were investigated by X-ray photoelectron spectroscopy (XPS) analysis. The Sr and Ta atoms of SBT film react with fluorine and then Sr-F and Ta-F were removed by the physical sputtering of Ar ion. The surface of etched SBT film with CHF$_3$(Ar+CHF$_3$) of 0.1 was analyzed by secondary ion mass spectrometer (SIMS). Scanning electron microscopy (SEM) was used for examination of etched profile of SBT film under CHF$_3$(Ar+CHF$_3$) of 0.1 was about 85˚.85˚.˚.

  • PDF

Surface morphology and deuterium retention in W and W-HfC alloy exposed to high flux D plasma irradiation

  • Yongkui Wang;Xiaochen Huang;Jiafeng Zhou;Jun Fang;Yan Gao;Jinlong Ge;Shu Miao;Zhuoming Xie
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.575-579
    • /
    • 2023
  • In this work, pure W and W-0.5wt%HfC alloy (WHC05) were fabricated by sintering and hot-rolling following the same processing route. After exposing to a high flux deuterium plasma irradiation with the D+ flux to three fluences of 6.00 × 1024, 2.70 × 1025 and 7.02 × 1025 D/m2, the evolution of surface morphology, deuterium retention and hardening behaviors in pure W and WHC05 has been studied. The SEM results show the formation of D blisters on the irradiated area, and with the increase of D implantation, the size of these blisters increases from 200 ~ 500 nm (2.70 × 1025 D/m2) to 1 ~ 2 ㎛ (7.02 × 1025 D/m2) in WHC05 and from 1 ~ 2 ㎛ (2.70 × 1025 D/m2) to > 3 ㎛ (7.02 × 1025 D/m2) in pure W, respectively. A higher D retention and obvious hardening are observed in pure W than that of the WHC05 alloy, indicating an improve radiation resistance in WHC05 compared to pure W.

활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성 (Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules)

  • 송은지;김민지;한정인;최예지;이영석
    • 공업화학
    • /
    • 제30권2호
    • /
    • pp.160-166
    • /
    • 2019
  • 본 연구에서는 새집증후군 유발 가스인 초산 가스에 대한 활성탄소섬유의 흡착 성능을 향상시키기 위하여, 산소플라즈마 처리를 통해 활성탄소섬유에 산소작용기를 도입하였다. 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 산소플라즈마 활성종이 더 많이 생성되었다. 이로 인해 물리적 및 화학적인 식각이 더 많이 발생하여 활성탄소섬유의 비표면적이 감소하였다. 특히, 60 sccm의 산소 가스 유량이 주입된 시료(A-O60)의 비표면적의 경우 미처리 시료와 비교하여 약 6.95% 감소된 $1.198m^2/g$까지 감소하였다. 반면, 산소플라즈마 처리 시 주입되는 산소 가스의 유량이 증가할수록 활성탄소섬유 표면에 도입되는 산소 함량이 증가하였으며, 최대 35.87%까지 도입되었음을 확인하였다. 또한, 산소플라즈마 처리된 활성탄소섬유의 초산 가스 흡착 성능은 미처리 활성탄소섬유 대비 최대 43% 향상되었다. 이것은 산소플라즈마 처리에 의해 도입되는 O=C-O와 같은 산소작용기와 초산 분자 사이의 쌍극자 모멘트에 의한 수소결합 형성에 기인한다.

결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구 (A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells)

  • 이경동;김영도;;부현필;박성은;탁성주;김동환
    • 한국진공학회지
    • /
    • 제21권1호
    • /
    • pp.29-35
    • /
    • 2012
  • 수소화된 실리콘 질화막은 결정질 태양전지 산업에서 반사방지막과 패시베이션 층으로 널리 사용되고 있다. 또한, 수소화된 질화막은 금속 소성공정과 같은 높은 공정온도를 거친 후에도 결정질 실리콘 태양전지의 표면층으로서 충족되는 특성들이 변하지 않고 유지 되어야 한다. 본 연구에서는 Plasma enhanced chemical vapor deposition 장치를 이용한 수소화된 실리콘 질화막의 특성 변화에 대한 경향성을 알아보기 위하여 증착조건의 변수(온도, 증착거리, 무선주파수 전력, 가스비율 등)들을 다양하게 가변하여 증착조건의 최적화를 찾았다. 이후 수소화된 실리콘 질화막의 전구체가 되는 사일렌($SiH_4$)과 암모니아 ($NH_3$) 가스비를 변화시켜가며 결정질 실리콘 태양전지에 사용되기 위한 박막의 광학 전기 화학적 그리고 표면 패시베이션 특성들을 분석하였다. 가스 비율에 따른 수소화된 실리콘 질화막의 굴절율 범위는 1.90~2.20까지 나타내었다. 결정질 실리콘 태양전지에 사용하기 위한 가장 적합한 특성은 3.6 ($NH_3/SiH_4$)의 가스비율을 나타내었다. 이를 통하여 $156{\times}156mm$ 대면적 결정질 실리콘 태양전지를 제작하여 17.2 %의 변환 효율을 나타내었다.

반응가스 비율에 따른 탄소나노월의 성장특성 (Growth Properties of Carbon nanowall according to the Reaction Gas Ratio)

  • 김성윤;강현일;최원석;정연호;임윤식;유영식;황현석;송우창
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increased the reaction area of graphite electrodes used carbon nanotube (CNT) and porous carbon. CNT is limited to device utilization in order to used a metal catalyst by lack of surface area to improve. In contrast carbon nanowall (CNW) is chemically very stable. So this paper, microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow carbon nanowall (CNW) on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. To find the growth properties of CNW according to the reaction gas ratio, we have changed the methane to hydrogen gas ratios (4:1, 2:1, 1:2, and 1:4). The vertical and surficial conditions of the grown CNW according to the gas ratios were characterized by a field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy measurements showed structure variations.

중·저위도 지구 전리권 현상 및 연구 현황 (Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research )

  • 김어진;김기남
    • 우주기술과 응용
    • /
    • 제3권3호
    • /
    • pp.239-256
    • /
    • 2023
  • 지구 전리권은 고층대기의 일부가 이온화되어 전파에 영향을 주는 플라즈마 상태로 존재하는 영역으로 통신과 관련하여 실생활에 직접적으로 영향을 주어 오랜 기간 연구되어온 분야이다. 고도에 따라 전자밀도를 이루는 주된 이온에 따라 D-층, E-층, F-층으로 구분되며, 전자 밀도에 비해 중성대기 밀도가 매우 커서 그 영향을 고려한 플라즈마로 기술되어야 한다. 또한 태양에서 시작되어 지표면에 이르는 영역까지 전리권 외부의 영향이 직접적으로 반영되는 영역으로 복잡하고 다양한 영역의 연구가 연관되는 분야이다. 본 논문에서는 지구 고층대기가 이온화되어 전리권을 형성하는 과정을 설명하고 중·저위도 전리권의 특성에 대해 소개하였다. 또한 현재까지 전리권과 관련하여 국내 연구자들이 참여한 연구를 소개하고 향후 전리권 연구 분야의 교류 활성화에 활용되기를 기대한다.

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • 문학기;이정훈;이수진;윤재홍;김형준;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

$Cl_2$/Ar 분위기에서 GST 박막의 ICP 에칭 (Inductively Coupled Plasma Etching of GST Thin Films in $Cl_2$/Ar Chemistry)

  • 유금표;박은진;김만수;이승환;권광호;민남기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1438-1439
    • /
    • 2006
  • $Ge_{2}Sb_{2}Te_5$(GST) thin film at present is a promising candidate for a phase change random access memory (PCRAM) based on the difference in resistivity between the crystalline and amorphous phase. PCRAM is an easy to manufacture, low cost storage technology with a high storage density. Therefore today several major chip in manufacturers are investigating this data storage technique. Recently, A. Pirovano et al. showed that PCRAM can be safely scaled down to the 65 nm technology node. G. T Jeonget al. suggested that physical limit of PRAM scaling will be around 10 nm node. Etching process of GST thin ra films below 100 nm range becomes more challenging. However, not much information is available in this area. In this work, we report on a parametric study of ICP etching of GST thin films in $Cl_2$/Ar chemistry. The etching characteristics of $Ge_{2}Sb_{2}Te_5$ thin films were investigated using an inductively coupled plasma (ICP) of $Cl_2$/Ar gas mixture. The etch rate of the GST films increased with increasing $Cl_2$ flow rate, source and bias powers, and pressure. The selectivity of GST over the $SiO_2$ films was higher than 10:1. X-ray photoelectron spectroscopy(XPS) was performed to examine the chemical species present in the etched surface of GST thin films. XPS results showed that the etch rate-determining element among the Ge, Sb, and Te was Te in the $Cl_2$/Ar plasma.

  • PDF