• Title/Summary/Keyword: Surface Area of Plasma

Search Result 258, Processing Time 0.024 seconds

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

Powder Characteristics of Fly Ash Beneficiated by Cold Plasma and Heat Treatment

  • Lee, Seung-Heun;Cho, Un-Jin;Kwon, Sung-Ku
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.93-98
    • /
    • 2016
  • Cold plasma and heat treatment were selected as technologies to reduce unburned carbon in fly ash to less than 1.0%. Both cold plasma and heat treatment made it possible to eliminate unburned carbon to less than 1.0%. In the case of fly ash, which almost entirely eliminated unburned carbon with an ignition loss of 0.5%, heat treatment caused adhesion among particles and the BET specific surface area rapidly decreased as the mean particle size increased. On the other hand, with cold plasma, unburned carbon elimination caused the BET specific surface area to decrease and, as no adhesion occurred among particles, the mean particle size became small. Also, cold plasma treatment allowed small spherical particles confined within the unburned carbon particles to be released with the elimination of the unburned carbon frame, so that the quantity of fine particles had a tendency to slightly increase.

Surface Treatment of Polypropylene using a Large Area Atmospheric Pressure Plasma-solution System (대면적 대기압 플라즈마-용액 시스템을 이용한 폴리프로필렌 표면 처리)

  • Tran, Chinh Quoc;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.271-276
    • /
    • 2011
  • We investigated the possibility of introducing functional groups without damaging surface polymeric chains through the treatment of a polypropylene(PP) film immersed in liquid phase using an atmospheric pressure plasma with large area. The ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate: $[BMIM]^{+}[BF_{4}]^{-}$- was successfully applied for generating stable plasmas in the plasma-solution system. We successfully treated the film surface using the plasma-solution system and confirmed various oxygen-containing functional groups formed on the surface of PP film. The surface free energy of PP film was increased with increasing plasma treatment time and power. It also showed a maximum value at the PP sample treated in the ionic liquid solution of 1.5 M. ATR-FTIR analyses revealed the increase of various carbonyl groups(1,726 $cm^{-1}$, 1,643 $cm^{-1}$) and OH groups$(3,100{\sim}3,500\;cm^{-1})$ after plasma treatment of PP film, and XPS also supported the ATR-FTIR result.

Effect by Temperature Distribution of Target Surface during Sputtering by Bipolar Pulsed Dc and Continuous Dc (직류와 양극성 펄스직류에 의한 스퍼터링시 타겟 표면의 온도 분포와 그 영향)

  • Yang, Won-Kyun;Joo, Jung-Hoon;Kim, Young-Woo;Lee, Bong-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • We measured the temperature of target surface inducing by various physical phenomenon on magnetron sputtering target and confirmed the possibilities if the temperature distribution could affect plasma and deposited thin film. The target of magnetron sputtering has two types: round type and rectangular type. In a rectangular target, the concentrated discharge area by corner effect by magnetic field and non-uniform erosion of target are generated. And we found the generation of non-uniform temperature distribution on the target surface from this. This area was $10{\sim}20^{\circ}C$ higher than non-sputtering area. And if particles are generated during sputtering process, they were $20^{\circ}C$ higher than the area where is higher than non-sputtering area. These effects result in non-uniformity of thin films, crack of ceramic target, and shortening target life by non-uniform erosion.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

Study on the Adhesive Properties of Polyesters Reinforcing Materials

  • Krump, H.;Hudec, I.;Cernak, M.;Janypka, P.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.192-194
    • /
    • 2002
  • Polyester cord yarns have been treated in an atmospheric-pressure nitrogen plasma reactor in order to enhance their adhesion to rubber. A thin layer or the plasma was generated in the close vicinity of the yam surface using various types or surface discharge. To assess the effect of the plasma treatment on fiber surface properties, the cord thread/rubber matrix adhesion values measured using the untreated and threads cord threads were compared. The static and dynamic adhesion of the cord thread to rubber was characterized by using the standard Henley test. The dynamic adhesion values for the reference and plasma treated fiber were $7,3{\pm}1,2\;N$ and $83,5{\pm}3,5\;N$. The surface properties were investigated by scanning electron microscopy, infrared spectroscopy and electron spin resonance spectroscopy. It is concluded that both polar group interactions and increased surface area of the fibers are responsible for the improved adhesive strength.

Surface treatment of silver-paste electrode by atmospheric-pressure plasma-jet (대기압 플라즈마 제트를 이용한 실버페이스트 전극의 표면처리)

  • Sheik Abdur Rahman;Shenawar Ali Khan;Yunsook Yang;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Silver paste is a valuable electrode material for electronic device applications because it is easy to handle with relatively low heat treatment. This study treated the electrode surface using an atmospheric-pressure plasma jet on the silver-paste electrode. This plasma jet was generated in an argon atmosphere using a high voltage of 5.5 to 6.5 kV with an operating frequency of 11.5 kHz. Plasma-jet may be more beneficial to the printing process by performing it at atmospheric pressure. The electrode surface becomes hydrophilic quickly and contact angle variation is observed on the electrode surface as a function of plasma treatment time, applied voltage, and gas flow rate. Also, there was no deviation in the contact angle after the plasma treatment in the large-area sample, that means a uniform result could be obtained regardless of the substrate size. The outcomes of this study are expected to be very useful in forming a stacked structure in the manufacture of large-area electronic devices and future applications.

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment (실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석)

  • Park, Hae-Sung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF