• Title/Summary/Keyword: Surf zone

Search Result 107, Processing Time 0.018 seconds

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Kim, Ji-Yeon;Lee, Joong-Woo;Lee, Hak-Seung;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.421-428
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Analysis of Littoral Currents by the Coupled Hydrodynamic Model (복합해수유동 수치모형에 의한 조간대 연안류의 해석)

  • Lee, Jong-Sup;Kwon, Kyong-Hwan;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.247-258
    • /
    • 2014
  • To evaluate the influence of the external force components on the littoral currents in the Gusipo beach, Jeonbuk, West Coast of Korea where a wide tidal sand flat developed, a coupled hydrodynamic model considered real time tidal currents and wave-induced currents was constructed in which the EFDC for tides and tidal currents, the SWAN for waves and the SHORECIRC for wave-induced currents were used as the hindcasting models. A series of field observations for tides, tidal currents and incident waves were carried out and especially to observe the littoral currents in the tidal sand flat, the GPS mounted and light weight drogues were used. Also wind data were collected from the adjacent weather station. To analyze the littoral current components, the numerical drogue tracking results considered real time winds, tides and waves were compared with the field drogue data. The drift speed of numerical drogues was reproduced as the range of 68.0~105.2% compared with the field data and the velocity error of main direction component showed a good result as -16.7~10.0%. As a result, in the mild slope tidal flat including wide surf zone, the tides and winds were the major affection component of the littoral currents, on the other hand, the wave-induced currents seemed the minor component when the incident wave heights were relatively small.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Intraspecific Zonation of the Benthic Amphipod Pontogeneia rostrata in Relation to Diel and Tidal Cycles (저서성 단각류 Pontogeneia rostrata의 종내 대상분포와 주야-조석주기)

  • YU Ok Hwan;SUH Hae-Lip;SOH Ho Youn
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.500-507
    • /
    • 1998
  • Using a sledge net, the benthic amphipods were taken over one cycle of the neap and spring tides in January 1993 at the sandy shore surf zone of Dolsando, southern Korea. From these samples, we investigated the diel and tidal effects on the intraspecific zonation of Pontogeneia rostrata. The density of p. rostrata was higher during neap tide than spring. Of three categories (adult males and females and juveniles), juveniles and males attained to its highest density during neap and spring tides, respectively. Length- frequency data show that the high mortality of juveniles seemed to occur in winter. In the surface at night, it is significant that juveniles were significantly more abundant during neap tide than spring, whereas both adult males and females were more abundant during spring tide than neap. This suggests that the vortical migration patterns of juveniles and adults vary with the type of tides. During flood of spring tide, more than $90\%$ of population collected at the area above the mean sea level (MSL) were adults. With a decrease of female/male ratio, size of males increased there but that of female did not change, indicating an active migration of large males. This behavior can provide an extension of distribution area far large males, and also give a competitive advantage to large male against small one for mate and feeding. Although adult p. rostrata was collected at 100 cm above MSL at night during spring tide, a major portion of population as usually present on the shore below MSL. The center of zonation was restricted from 50 cm to 250 cm below MSL.

  • PDF

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Preliminary Study on the Development of a Platform for the Selection of Optimal Beach Stabilization Measures against the Beach Erosion - Centering on the Yearly Sediment Budget of Mang-Bang Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구-맹방해변 이송모드별 년 표사수지를 중심으로)

  • Cho, Yong Jun;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.28-39
    • /
    • 2019
  • In the design process of counter measures against the beach erosion, information like the main sediment transport mode and yearly net amount of longshore and cross shore transport is of great engineering value. In this rationale, we numerically analyzed the yearly sediment budget of the Mang-Bang beach which is suffering from erosion problem. For the case of cross sediment transport, Bailard's model (1981) having its roots on the Bagnold's energy model (1963) is utilized. In doing so, longshore sediment transport rate is estimated based on the assumption that longshore transport rate is determined by the available wave energy influx toward the beach. Velocity moments required for the application of Bailard's model (1981) is deduced from numerical simulation of the nonlinear shoaling process over the Mang-Bang beach of the 71 wave conditions carefully chosen from the wave records. As a wave driver, we used the consistent frequency Boussinesq Eq. by Frelich and Guza (1984). Numerical results show that contrary to the Bailard's study (1981), Irribaren NO. has non negligible influence on the velocity moments. We also proceeds to numerically simulate the yearly sediment budget of Mang-Bang beach. Numerical results show that for ${\beta}=41.6^{\circ}$, the mean orientation of Mang-Bang beach, north-westwardly moving longshore sediment is prevailing over the south-eastwardly moving sediment, the yearly amount of which is simulated to reach its maxima at $125,000m^3/m$. And the null pint where north-westwardly moving longshore sediment is balanced by the south-eastwardly moving longshore sediment is located at ${\beta}=47^{\circ}$. For the case of cross shore sediment, the sediment is gradually moving toward the shore from the April to mid October, whereas these trends are reversed by sporadically occurring energetic wind waves at the end of October and March. We also complete the littoral drift rose of the Mang-Bang beach, which shows that even though the shore line is temporarily retreated, and as a result, the orientation of Mang-Bang beach is larger than the orientation of null pont, south-eastwardly moving longshore sediment is prevailing. In a case that the orientation of Mang-Bang beach is smaller than the orientation of null pont, north-westwardly moving longshore sediment is prevailing. And these trend imply that the Mang-Bang beach is stable one, which has the self restoring capability once exposed to erosion.