• Title/Summary/Keyword: Suppression

Search Result 5,294, Processing Time 0.037 seconds

A New Integrated Suppression Algorithm Based on Combined Power of Acoustic Echo and Background Noise (결합된 음향학적 반향 및 배경 잡음 전력에 기반한 새로운 통합 제거 알고리즘)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.402-409
    • /
    • 2010
  • In this paper, we propose an efficient integrated suppression algorithm based on combined power of acoustic echo and background noise. The proposed method combines the acoustic echo and noise power by the weighting parameter derived from the decision rule based on the estimated echo to noise power ratio. Therefore, in the proposed approach, the acoustic echo and noise signal are able to be reduced through only one suppression filter based on the estimated combined power. The proposed unified structure improves the problems of the residual echo and noise resulted from the conventional unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm or vice versa. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

Comparison of Images Using Optimized Grid and Images Using Grid Supperession Software in the Diagnosis of Micro Lesions (미세병변 진단에서 Optimized Grid을 사용한 영상과 Grid Supperession Software를 사용한 영상의 비교분석)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2018
  • Quantitative analysis was performed to confirm that moire artifact was removed without loss of image when using grid suppression software in the diagnosis of micro lesions. we showed that grid suppression images can be morphologically different from original images as they are significantly lower than those of the optimized grid in the similarity analysis with reference images in mammographic phantom images. We were confirmed that images of microcalcification with smaller signal than noise were lost because the pixel values of all lesions increased significantly after the grid suppression, The change in contrast using the NORMI 13 X-ray test phantom was reduced to 30% of the reference image, This result was significantly lower than the 90% when using the optimized grid. In conclusion, the use of grid suppression software in clinical images should be carefully considered because of the possibility of misdiagnosis due to micro lesion loss and morphological changes.

Practical Alarm Suppression Rules and their Implementation for Nuclear Power Plants (원자력발전소의 출력감발모드를 위한 경보축약 규칙)

  • Hwang, In-Koo;Kim, Yang-Mo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1804-1810
    • /
    • 2011
  • It is necessary to adopt some logical techniques and methods of alarm processing for a large complex plant such as nuclear power plants in order to present the occurred alarm messages properly and concisely. Among such alarm processing techniques, the alarm suppressing function is a strong tool to avoid alarm flooding during the sudden transients of plant output power such as turbine trips, reactor trips and other incidents. Unless any suppression or representation technologies are used in an alarm message listing system, it cannot provide quick assistance to plant operators or supervisors during plant upsets because too many alarm messages are presented in an alarm list window. This paper presents the key suppression methods and analysis processes developed for implementing a suppressed alarm message listing function of an integrated alarm system called LogACTs which has been applied to a CANDU nuclear power plant. A simulation testing of the suppressing function conducted with the real plant alarm message list data has demonstrated an effective performance of the developed logics with the high suppression rate.

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

NMR Solvent Peak Suppression by Piecewise Polynomial Truncated Singular Value Decomposition Methods

  • Kim, Dae-Sung;Lee, Hye-Kyoung;Won, Young-Do;Kim, Dai-Gyoung;Lee, Young-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.967-970
    • /
    • 2003
  • A new modified singular value decomposition method, piecewise polynomial truncated SVD (PPTSVD), which was originally developed to identify discontinuity of the earth's radial density function, has been used for large solvent peak suppression and noise elimination in nuclear magnetic resonance (NMR) signal processing. PPTSVD consists of two algorithms of truncated SVD (TSVD) and L₁ problems. In TSVD, some unwanted large solvent peaks and noise are suppressed with a certain soft threshold value, whereas signal and noise in raw data are resolved and eliminated in L₁ problems. These two algorithms were systematically programmed to produce high quality of NMR spectra, including a better solvent peak suppression with good spectral line shapes and better noise suppression with a higher signal to noise ratio value up to 27% spectral enhancement, which is applicable to multidimensional NMR data processing.

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.