• 제목/요약/키워드: Support vectors

검색결과 169건 처리시간 0.024초

SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현 (Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems)

  • 임정수;장준혁
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.461-467
    • /
    • 2011
  • 제한된 대역폭을 효율적으로 사용하기 위해서 도입된 가변 전송률은 먼저 신호의 정확한 분류를 필요로 한다. 특히 멀티미디어 서비스가 보편화 되면서 음성/음악 신호 분류의 중요성도 높아지게 되었다. 음성/음악 분류기 중, 서포트벡터머신 (SVM)을 이용한 분류기는 높은 분류 정확도로 주목받고 있다. 그러나 SVM는 많은 계산량과 저장 공간을 요구하므로 효율적인 구현이 요구되며, 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 더욱 그러하다. 본 논문에서는 먼저 SVM을 이용한 음성/음악 분류기의 임베디드 시스템으로의 구현을 실행시간과 에너지소비의 관점에서 분석하고, 효율적인 구현을 위한 두가지 방법들을 제안한다. 서포트벡터의 판별결과에의 기여도를 바탕으로 기여도가 낮은 벡터들을 제외하는 방법과, 음성/음악 신호에 기본적으로 존재하는 각 프레임간의 상관관계를 이용하여 입력신호의 일부를 건너뛰는 방법이다. 이 기법들은 SVM의 학습 시 사용되는 다른 최적화 기법에 관계없이 적용이 가능하며, 실험을 통해 분류의 정확도, 실행시간, 그리고 에너지소비의 관점에서 그 성능을 증명하였다.

SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류 (EEG Signal Classification based on SVM Algorithm)

  • 이상원;조한진;채철주
    • 한국융합학회논문지
    • /
    • 제11권2호
    • /
    • pp.17-22
    • /
    • 2020
  • 본 논문에서는 사용자의 EEG(Electroencephalogram)신호를 측정하여 SVM(Support Vector Machine) 알고리즘을 이용하여 EEG 신호룰 분류하고 신호의 정확도를 측정하였다. 사용자의 EEG 신호를 측정하기 위해 남·여를 구분하여 실험을 진행하였으며, EEG 신호 측정은 단채널 EEG 디바이스를 이용하였다. EEG 디바이스를 이용하여 사용자의 EEG 신호를 측정한 결과는 R을 이용하여 분석하였다. 또한 SVM의 분류 성능이 최고가 되는 특정 벡터의 조합을 적용시켜 EEG 측정 실험 데이터를 80:20(훈련 데이터: 테스트 데이터) 비율로 예측해 본 결과 인식률 93.2% 의 예측 정확도를 보였다. 본 논문에서는 사용자의 EEG 신호를 약 93.2% 정도로 인식할 수 있었으며, SVM 알고리즘의 간단한 선형 분류만으로 수행이 가능하다는 점은 EEG 신호를 이용하여 생체인증에 다양하게 활용될 수 있음을 제시하였다.

Signed Local Directional Pattern을 이용한 강력한 얼굴 표정인식 (Robust Facial Expression Recognition Based on Signed Local Directional Pattern)

  • 류병용;김재면;안기옥;송기훈;채옥삼
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.89-101
    • /
    • 2014
  • 본 논문에서는 얼굴 표정인식을 위한 새로운 지역 미세 패턴 기술 방법인 Signed Local Directional Pattern(SLDP)을 제안한다. SLDP는 얼굴 영상의 텍스쳐 정보를 표현하기 위해 에지 정보를 이용한다. 이는 기존의 방법들에 비해 뛰어난 구별 성능과 효율적인 코드 생성을 가능하게 한다. SLDP는 마스크 범위 이웃 화소들을 이용하여 에지 반응 값을 계산하고 이들 중 부호를 고려하여 에지 반응 값이 큰 에지 방향 정보를 가지고 만들어진다. 이는 기존 LDP에서 구별하지 못하던 비슷한 에지구조에 밝기 값이 반대인 지역 패턴을 구별할 수 있다. 본 논문에서는 얼굴 표정인식을 위해 얼굴 영상을 여러 영역으로 분할하고 각 영역으로부터 SLDP코드의 분포를 계산한다. 각 분포는 얼굴의 지역적인 특징을 나타내고 이들 특징을 연결해서 얼굴 전체를 나타내는 얼굴 특징 벡터를 생성한다. 본 논문에서는 생성된 얼굴 특징 벡터와 SVM(Support Vector Machine)을 이용해서 Cohn-Kanade 데이터베이스와 JAFFE데이터베이스에서 얼굴 표정인식을 수행했다. SLDP는 표정인식에서 기존 방법들보다 뛰어난 결과를 보여주었다.

Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식 (Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers)

  • 장길진;조아라;박정식;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2014
  • 본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.

연관 단어 마이닝을 사용한 웹문서의 특징 추출 (Feature Extraction of Web Document using Association Word Mining)

  • 고수정;최준혁;이정현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.351-361
    • /
    • 2003
  • 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야하는 문제점, 명사구를 처리해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 화률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 백터로 표현한다. Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위허ㅐ 연관 단어를 구성하는 단어의 수와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도, Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.

우도비 특징 벡터를 이용한 SVM 기반의 음성 검출기 (Voice Activity Detection Based on SVM Classifier Using Likelihood Ratio Feature Vector)

  • 조규행;강상기;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.397-402
    • /
    • 2007
  • 본 논문에서는 기존의 통계적 모델 기반의 음성 검출기의 성능 향상을 위해 이진 분류에 우수한 support vector machine(SVM)을 도입한다. 기존의 통계적 모델 기반 음성 검출기의 경우 음성의 존재와 부재에 대한 가설로부터 각각의 통계적 모델을 세워 입력 데이타에 의해 결정된 각 주파수 채널별 우도비(likelihood ratio)를 단순히 기하 평균을 취하여 문턱값과 비교, 음성 검출 여부를 판단한다. 제안된 음성 검출기는 기존의 기하 평균을 이용한 결정식을 대신하여 분류 오류 확률이 최소화되도록 각 주파수 채널별 우도비를 SVM의 특징 벡터로 적용한다. 제안된 SVM 기반의 통계적 모델 음성 검출기는 기존의 LRT를 이용한 음성 검출기 및 SVM 기반의 음성 검출기들과 비교하여 다양한 잡음 환경에서 우수한 성능을 나타낸다.

고차원 멀티미디어 데이터 검색을 위한 벡터 근사 비트맵 색인 방법 (Vector Approximation Bitmap Indexing Method for High Dimensional Multimedia Database)

  • 박주현;손대온;낭종호;주복규
    • 정보처리학회논문지D
    • /
    • 제13D권4호
    • /
    • pp.455-462
    • /
    • 2006
  • 고차원 데이터 공간에서의 효과적인 검색을 위해 최근 VA-file[1], LPC-file[2] 등과 같이 벡터 근사에 기반을 둔 필터링 색인 방법들이 연구되었다. 필터링 색인 방법은 벡터를 근사한 작은 크기의 색인 정보를 사용하여 근사 거리를 계산하고, 이를 사용하여 질의 벡터와 유사하지 않은 대부분의 벡터들을 빠른 시간 안에 검색 대상에서 제외한다. 즉, 실제 벡터 대신 근사 벡터를 읽어 디스크 I/O 시간을 줄여 전체 검색 속도를 향상시키는 것이다. 하지만 VA-file 이나 LPC-file은 근사 거리를 구하는 방법이 순차 검색과 같거나 복잡하기 때문에 검색 속도 향상 효과가 그리 크지 않다는 문제점을 가지고 있다. 본 논문은 이러한 근사 거리 계산 시간을 줄이기 위하여 새로운 비트맵 색인 구조를 제안한다. 근사 거리 계산속도의 향상을 위하여, 각 객체의 값을 특성 벡터 공간상의 위치를 나타내는 비트 패턴으로 저장하고, 객체 사이의 거리를 구하는 연산은 실제 벡터 값의 연산보다 속도가 훨씬 빠른 XOR 비트 연산으로 대체한다. 실험에 의하면 본 논문이 제안하는 방법은 기존 벡터 근사 접근 방법들과 비교하여 데이터 읽기시간은 더 크지만, 계산 시간을 크게 줄임으로써 전체 검색 속도는 순차 검색의 약 4배, 기존의 방법들보다는 최대 2배의 성능이 향상되었다. 결과적으로, 데이터베이스의 속도가 충분히 빠른 경우 기존의 벡터 근사 접근법의 필터링을 위한 계산 시간을 줄임으로써 더욱 검색 성능을 향상 시킬 수 있음을 확인할 수 있다.

유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법 (An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors)

  • 흥 뉘엔;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.23-35
    • /
    • 2013
  • 본 논문은 고장 분류 시스템을 위해 진동 신호로부터 특징 벡터를 자동적으로 추출하는 효과적인 기법을 제안한다. 기존의 멜-주파수 캡스트럼 계수는 진동신호의 노이즈에 민감하여 분류 정확도를 감소시키는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문은 4단계 필터 뱅크로 구성된 스펙트럴 엔벨로프 캡스트럼 계수 분석을 제안하며, 4단계는 (1) 모든 진동 신호의 스펙트럴 엔벨로프를 기술하기 위한 선형 예측 코딩 알고리즘 사용 단계, (2) 일반적인 스펙트럴 모양을 얻기 위해 모든 엔벨로프의 평균화 단계, (3) 평균 엔벨로프와 그 주파수의 최대값을 찾기 위한 기울기 하강 방법 사용 단계, (4) 엔벨로프의 주파수 사이의 거리로부터 계산된 중앙값을 얻는데 사용되는 비 중첩 필터 뱅크 단계로 구성된다. 이4-단계필터뱅크는 특징벡터를 추출하기위해 캡스트럼 계수 계산에 사용된다. 마지막으로 유도전동기의 결함 형태를 구분하기 위해 이러한 특수 파라미터를 사용하는 다중 계층 서포트 벡터 머신을 사용한다. 모의실험 결과, 제안하는 방법은 약 99.65%의 분류 성능을 보이며, 동시에 기존 방법들보다 우수한 성능을 보인다.

주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘 (EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control)

  • 이기배;이종현;배진호;이재일
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.117-125
    • /
    • 2015
  • 본 논문은 '좌', '우' 방향 제어를 위해 취득된 EEG(Electroencephalogram) 신호 기반 분류 알고리즘과 EEG 센서, Labview, DAQ, Matlab, 주행로봇으로 구성된 방향 제어 시스템을 제안한다. 제안된 알고리즘은 DWT(Discrete Wavelet Transform)로 추출된 주파수대역 정보를 특징으로 이용하며, Fishers score를 이용하여 변별력이 높은 주파수 대역의 특징을 선별한다. 또한, SVM (Support Vector Machine)을 이용하여 분류 성능이 최고가 되는 특징벡터의 조합을 제안하고, 잘못된 판정에 의한 오동작을 방지하기 위한 MLD(Maximum Likelihood Decision) 기반의 판정보류 알고리즘도 제안한다. 제안된 알고리즘에 의해 선택된 4개의 특징벡터는 국제 표준 전극 배치법에 따른 P8 채널의 d2(16-32Hz), d5(2-4Hz) 주파수 대역의 전압의 절대 값 평균과 표준편차이다. SVM 분류기로 실험한 결과 98.75%의 정확도와 1.25%의 오류율 성능을 보였다. 또한, 오류 확률 70%를 판정 보류로 규정할 경우, 제안된 알고리즘은 인식률 95.63%의 정확도와 오류율 0%을 보였다.

Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현 (Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm)

  • 이태주;박승민;고광은;성원기;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.354-359
    • /
    • 2013
  • 본 논문을 통해서 우리는 최적화 알고리즘인 binary harmony search (BHS) 알고리즘을 이용하여 unsupervised nonlinear classifier를 구현하는 방안을 제시하였다. 패턴인식을 위한 기계학습이나 뇌파 신호의 분석 과정과 같이 벡터로 표현되는 특징들을 분류하는데 있어 다양한 알고리즘들이 제시되었다. 교사 학습기반의 분류 방식으로는 support vector machine과 같은 기법이 사용되어왔고, 비교사 학습 방법을 통한 분류 기법으로는 fuzzy c-mean (FCM)과 같은 알고리즘들이 사용되어 왔다. 그러나 기존에 사용해 왔던 분류 방법들은 비선형 데이터 분류에 적용하기 힘들거나 교사 학습을 적용하기 위해서 사전정보를 필요로 하는 문제점이 있다. 본 논문에서는 경험적 접근을 통해 공간상에 분포된 벡터 사이의 기하학적 거리를 최소로 만드는 벡터 집합을 선택하고 이를 하나의 클래스로 간주하는 방법을 적용한 분류법을 제시하였다. 비교 대상으로 FCM과 artificial neural network (ANN) 기반의 self-organizing map (SOM)을 제시하였다. 시뮬레이션에는 KEEL machine learing dataset을 사용하였고 그 결과, 제안된 방식이 기존 알고리즘에 비해 더 나은 우수성을 지니고 있음을 확인하였다.