• 제목/요약/키워드: Support vector regression

검색결과 549건 처리시간 0.027초

정해진 기저함수가 포함되는 Nu-SVR 학습방법 (Semiparametric Nu-Support Vector Regression)

  • 김영일;조원희;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.81-84
    • /
    • 2003
  • $\varepsilon$-SVR(e-Support Vector Regression)학습방법은 SV(Support Vector)들을 이용하여 함수 근사(Regression)하는 방법으로 최근 주목받고 있는 기법이다. SVM(SV machine)의 한 가지 방법으로, 신경망을 기반으로 한 다른 알고리즘들이 학습과정에서 지역적 최적해로 수렴하는 등의 문제를 한계로 갖는데 반해, 이러한 구조들을 대체할 수 있는 학습방법으로 사용될 수 있다. 일반적인 $\varepsilon$-SVR에서는 학습 데이터와 관사 함수 f사이에 허용 가능한 에러범위 $\varepsilon$값이 학습하기 전에 정해진다. 그러나 Nu-SVR(ν-version SVR)학습방법은 학습의 결과로 최적화 된 $\varepsilon$값을 얻을 수 있다. 정해진 기저함수가 포함되는 $\varepsilon$-SVR 학습방법(Sermparametric SVR)은 정해진 독립 기저함수를 사용하여 함수를 근사하는 방법으로, 일반적인 $\varepsilon$-SVR 학습방범에 비해 우수한 결과를 나타내는 것이 성공적으로 입증된 바 있다. 이에 따라, 본 논문에서는 정해진 기저함수가 포함된 ν-SVR 학습 방법을 제안하고, 이에 대한 수식을 유도하였다. 그리고, 모의 실험을 통하여 제안된 Sermparametric ν-SVR 학습 방법의 적용 가능성을 알아보았다.

  • PDF

Support Vector Regression을 ol용한 연속성 피드백 정보의 협동 추천 시스템 (Collaborative Recommendation System of Continuous Feedback Information Using Support Vector Regression)

  • 임민택;전성해;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.265-267
    • /
    • 2002
  • 인터넷으로부터 필요한 정보를 얻기 위하여 무의미한 탐색을 반복하는 경우가 자주 나타나고 있다. 이러한 Dizzy Web에서 사용자와 관련 있는 정보를 추천해 주는 방법에 대한 연구가 많이 진행되고 있다. 특히 협동 추천시스템에 대한 연구가 활발히 진행되고 있다. 이 시스템의 구현 알고리즘 중에서 기존의 메모리 기반은 수행 시간에 대한 부담이 매우 크며, 모델 기반은 연속성 데이터에 대한 처리가 어렵거나 불가능하다는 문제가 있다. 본 논문에서는 특히 웹 사용자 모델에서 효과적인 연속성 피드백 데이터를 이용한 사용자 모델링 방법을 제안하고 이를 통해 웹 페이지 예측을 수행하는 시스템을 구현하였다. 논문에 사용된 연속성 데이터는 사용자의 웹 페이지 방문시간이고 이 데이터를 분석하기 위해 기존의 모델 기반 알고리즘에 Support Vector Regression 기법을 결합하는 알고리즘을 설계하였다. 실험에서는 제안 모델의 정확성과 예측 능력에 대하여 기존의 Pearson 알고리즘과 비교하였다. 논문에서 제안하는 방법이 매우 적은 시간 비용을 요구하면서도 유의할 수 있는 수준의 결과가 얻을 수 있음이 확인되었다.

  • PDF

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

New Normalization Methods using Support Vector Machine Regression Approach in cDNA Microarray Analysis

  • Sohn, In-Suk;Kim, Su-Jong;Hwang, Chang-Ha;Lee, Jae-Won
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.51-56
    • /
    • 2005
  • There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.

  • PDF

서포트벡터 기계를 이용한 이상치 진단 (Outlier Detection Using Support Vector Machines)

  • 서한손;윤민
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.171-177
    • /
    • 2011
  • 실생활에서 얻어지는 자료에서 근사함수를 구성하기 위하여 모델링을 하기 전에 측정된 원자료로부터 이상치를 제거하는 것이 필요하다. 기존의 이상치 진단의 방법들은 시각화나 최대 잔차들을 이용해왔다. 그러나 종종 다차원의 입력자료를 가지는 비선형함수에 대한 이상치 진단은 좋지 않은 결과를 얻었다. 다차원 입력자료를 갖는 비선형함수에 대한 전형적인서포트 벡터 회귀에 기초한 이상치 진단방법들은 좋은 수행능력을 얻어지지만, 계산비용이나 모수들의 보정 등의 실질적인 문제점들을 가지고 있다. 본 논문에서 계산비용을 감소하고 이상치의 문턱을 적절히 정의하는 서포트 벡터회귀를 이용한 이상치 진단의 실질적인방법을 제안한다. 제안한 방법을 실제자료들에 적용하여 타당성을 보일 것이다.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.789-792
    • /
    • 2004
  • 웹 마이닝, 바이오정보학, 통계적 자료 분석 등 여러 분야에서 매우 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 가장 기본적인 평균과 최빈수뿐만 아니라 조건부 평균, 나무 모형, 그리고 마코프체인 몬테칼로 기법과 같은 결측치 대체 기법들을 적용하여 추정된 값에 의해 대체된다. 그런데 주어진 데이터의 결측치 비율이 크게 되면 기존의 결측치 대체 방법들의 예측의 정확도는 낮아지는 특성을 보인다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 결측치 대체 방법들의 수는 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 통계적 학습 이론 중에서 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형하여 적용하였다. 제안 방법을 이용하여 결측치 비율이 큰 희소 데이터의 전처리도 가능할 수 있도록 하였다 UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.