• Title/Summary/Keyword: Support vector machines

Search Result 435, Processing Time 0.031 seconds

Phoneme segmentation and Recognition using Support Vector Machines (Support Vector Machines에 의한 음소 분할 및 인식)

  • Lee, Gwang-Seok;Kim, Deok-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.981-984
    • /
    • 2010
  • In this paper, we used Support Vector Machines(SVMs) as the learning method, one of Artificial Neural Network, to segregated from the continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. A Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Speech recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme segregated from the eye-measurement. From the simulation results, we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).

  • PDF

Improving SVM with Second-Order Conditional MAP for Speech/Music Classification (음성/음악 분류 향상을 위한 2차 조건 사후 최대 확률기법 기반 SVM)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.102-108
    • /
    • 2011
  • Support vector machines are well known for their outstanding performance in pattern recognition fields. One example of their applications is music/speech classification for a standardized codec such as 3GPP2 selectable mode vocoder. In this paper, we propose a novel scheme that improves the speech/music classification of support vector machines based on the second-order conditional maximum a priori. While conventional support vector machine optimization techniques apply during training phase, the proposed technique can be adopted in classification phase. In this regard, the proposed approach can be developed and employed in parallel with conventional optimizations, resulting in synergistic boost in classification performance. According to experimental results, the proposed algorithm shows its compatibility and potential for improving the performance of support vector machines.

A Note on Fuzzy Support Vector Classification

  • Lee, Sung-Ho;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.133-140
    • /
    • 2007
  • The support vector machine has been well developed as a powerful tool for solving classification problems. In many real world applications, each training point has a different effect on constructing classification rule. Lin and Wang (2002) proposed fuzzy support vector machines for this kind of classification problems, which assign fuzzy memberships to the input data and reformulate the support vector classification. In this paper another intuitive approach is proposed by using the fuzzy ${\alpha}-cut$ set. It will show us the trend of classification functions as ${\alpha}$ changes.

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

An Improvement of LVQ3 Learning Using SVM (SVM을 이용한 LVQ3 학습의 성능개선)

  • 김상운
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.9-12
    • /
    • 2001
  • Learning vector quantization (LVQ) is a supervised learning technique that uses class information to move the vector quantizer slightly, so as to improve the quality of the classifier decision regions. In this paper we propose a selection method of initial codebook vectors for a teaming vector quantization (LVQ3) using support vector machines (SVM). The method is experimented with artificial and real design data sets and compared with conventional methods of the condensed nearest neighbor (CNN) and its modifications (mCNN). From the experiments, it is discovered that the proposed method produces higher performance than the conventional ones and then it could be used efficiently for designing nonparametric classifiers.

  • PDF

Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines (SVM음성인식기 구현을 위한 강인한 특징 파라메터)

  • 김창근;박정원;허강인
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • In this paper we propose effective speech recognizer through two recognition experiments. In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition performance of HMM and SVM at training data number and investigate recognition performance of each feature parameter while changing feature space of MFCC using Independent Component Analysis(ICA) and Principal Component Analysis(PCA). As a result of experiment, recognition performance of SVM is better than 1:.um under few training data number, and feature parameter by ICA showed the highest recognition performance because of superior linear classification.

Membership Function-based Classification Algorithms for Stability improvements of BCI Systems

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • To improve system performance, we apply the concept of membership function to Variance Considered Machines (VCMs) which is a modified algorithm of Support Vector Machines (SVMs) proposed in our previous studies. Many classification algorithms separate nonlinear data well. However, existing algorithms have ignored the fact that probabilities of error are very high in the data-mixed area. Therefore, we make our algorithm ignore data which has high error probabilities and consider data importantly which has low error probabilities to generate system output according to the probabilities of error. To get membership function, we calculate sigmoid function from the dataset by considering means and variances. After computation, this membership function is applied to the VCMs.

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • Hwang, Won-Woo;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.