• Title/Summary/Keyword: Support vector machines

Search Result 435, Processing Time 0.027 seconds

An Application of Support Vector Machines for Fault Diagnosis

  • Hai Pham Minh;Phuong Tu Minh
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.371-375
    • /
    • 2004
  • Fault diagnosis is one of the most studied problems in process engineering. Recently, great research interest has been devoted to approaches that use classification methods to detect faults. This paper presents an application of a newly developed classification method - support vector machines - for fault diagnosis in an industrial case. A real set of operation data of a motor pump was used to train and test the support vector machines. The experiment results show that the support vector machines give higher correct detection rate of faults in comparison to rule-based diagnostics. In addition, the studied method can work with fewer training instances, what is important for online diagnostics.

  • PDF

Development of Intelligent Credit Rating System using Support Vector Machines (Support Vector Machine을 이용한 지능형 신용평가시스템 개발)

  • Kim Kyoung-jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

A Convex Cluster Merging Algorithm using Support Vector Machines (Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘)

  • 최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다

Support Vector Machine based Cluster Merging (Support Vector Machines 기반의 클러스터 결합 기법)

  • Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.369-374
    • /
    • 2004
  • A cluster merging algorithm that merges convex clusters resulted by the Fuzzy Convex Clustering(FCC) method into non-convex clusters was proposed. This was achieved by proposing a fast and reliable distance measure between two convex clusters using Support Vector Machines(SVM) to improve accuracy and speed over other existing conventional methods. In doing so, it was possible to reduce cluster number without losing its representation of the data. In this paper, results for several data sets are given to show the validity of our distance measure and algorithm.

Modeling properties of self-compacting concrete: support vector machines approach

  • Siddique, Rafat;Aggarwal, Paratibha;Aggarwal, Yogesh;Gupta, S.M.
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.461-473
    • /
    • 2008
  • The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.

Fine-tuning SVM for Enhancing Speech/Music Classification (SVM의 미세조정을 통한 음성/음악 분류 성능향상)

  • Lim, Chung-Soo;Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machines have been extensively studied and utilized in pattern recognition area for years. One of interesting applications of this technique is music/speech classification for a standardized codec such as 3GPP2 selectable mode vocoder. In this paper, we propose a novel approach that improves the speech/music classification of support vector machines. While conventional support vector machine optimization techniques apply during training phase, the proposed technique can be adopted in classification phase. In this regard, the proposed approach can be developed and employed in parallel with conventional optimizations, resulting in synergistic boost in classification performance. We first analyze the impact of kernel width parameter on the classifications made by support vector machines. From this analysis, we observe that we can fine-tune outputs of support vector machines with the kernel width parameter. To make the most of this capability, we identify strong correlation among neighboring input frames, and use this correlation information as a guide to adjusting kernel width parameter. According to the experimental results, the proposed algorithm is found to have potential for improving the performance of support vector machines.

An analysis of Speech Acts for Korean Using Support Vector Machines (지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석)

  • En Jongmin;Lee Songwook;Seo Jungyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.365-368
    • /
    • 2005
  • We propose a speech act analysis method for Korean dialogue using Support Vector Machines (SVM). We use a lexical form of a word, its part of speech (POS) tags, and bigrams of POS tags as sentence features and the contexts of the previous utterance as context features. We select informative features by Chi square statistics. After training SVM with the selected features, SVM classifiers determine the speech act of each utterance. In experiment, we acquired overall $90.54\%$ of accuracy with dialogue corpus for hotel reservation domain.

Estimating global solar radiation using wavelet and data driven techniques

  • Kim, Sungwon;Seo, Youngmin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.475-478
    • /
    • 2015
  • The objective of this study is to apply a hybrid model for estimating solar radiation and investigate their accuracy. A hybrid model is wavelet-based support vector machines (WSVMs). Wavelet decomposition is employed to decompose the solar radiation time series into approximation and detail components. These decomposed time series are then used as inputs of support vector machines (SVMs) modules in the WSVMs model. Results obtained indicate that WSVMs can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois.

  • PDF

Improving the Generalization Error Bound using Total margin in Support Vector Machines (서포트 벡터 기계에서 TOTAL MARGIN을 이용한 일반화 오차 경계의 개선)

  • Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2004
  • The Support Vector Machine(SVM) algorithm has paid attention on maximizing the shortest distance between sample points and discrimination hyperplane. This paper suggests the total margin algorithm which considers the distance between all data points and the separating hyperplane. The method extends existing support vector machine algorithm. In addition, this newly proposed method improves the generalization error bound. Numerical experiments show that the total margin algorithm provides good performance, comparing with the previous methods.