• 제목/요약/키워드: Support vector machines(SVM)

검색결과 286건 처리시간 0.026초

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류 (Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type)

  • 김양석;이도환;김성국
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1681-1689
    • /
    • 2010
  • Support Vector Machine(SVM)을 이용한 회전기계 진단 연구가 많이 수행되어 왔으나 결함 분류성능은 입력 특징과 더불어 다중 분류 방법, 이진분류기, 커널함수 등에 따라 다르다. SVM 을 이용한 대부분의 기존 연구들은 한번 입력 특징들을 선정하면 결함 분류시 동일한 특징데이터를 이용한다. 본 논문에서는 회전기계의 다양한 결함조건에서 측정한 진동신호로부터 추출한 통계적 특징들을 이용하여 각각의 결함을 분류하기 위한 최적 특징들을 선정한 후, 해당 결함상태를 분류하기 위한 SVM 학습과 분류에 각각 이용하였다. 실험자료를 이용한 검증 결과, 제안한 단계 분류 방법이 상대적으로 적은 학습시간으로 단일 다중 분류 방법과 유사한 분류 성능을 얻을 수 있었다.

음성신호 기반의 성별인식을 위한 Support Vector Machines의 적용 (Voice-Based Gender Identification Employing Support Vector Machines)

  • 이계환;강상익;김덕환;장준혁
    • 한국음향학회지
    • /
    • 제26권2호
    • /
    • pp.75-79
    • /
    • 2007
  • 본 논문은 SVM(Support Vector Machines)을 이용한 음성신호 기반의 효과적인 성별인식 시스템을 제안한다. 분별적 이진(binary) 패턴 분류기인 SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 우수한 성능을 보인다고 알려져 있다. 연구에서는 기존의 성별인식에서 널리 쓰이고 있는 MFCC(Mel Frequency Cepstral Coefficients)를 사용하여 SVM과 기존의 GMM(Gaussian Mixture Model) 알고리즘의 성별인식 성능을 비교하였고, 특히, 보다 향상된 SVM의 성별인식을 위해 MFCC와 Pitch를 이용한 결합 특징 벡터를 적용하였다. 실험결과 MFCC 파라미터를 사용했을 때 제안된 SVM이 GMM보다 우수한 성별인식 성능을 보였고, 제안된 결합 특징 벡터를 사용 했을 때 우수한 성능을 보였다.

Modeling properties of self-compacting concrete: support vector machines approach

  • Siddique, Rafat;Aggarwal, Paratibha;Aggarwal, Yogesh;Gupta, S.M.
    • Computers and Concrete
    • /
    • 제5권5호
    • /
    • pp.461-473
    • /
    • 2008
  • The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

Multi-Class SVM+MTL for the Prediction of Corporate Credit Rating with Structured Data

  • Ren, Gang;Hong, Taeho;Park, YoungKi
    • Asia pacific journal of information systems
    • /
    • 제25권3호
    • /
    • pp.579-596
    • /
    • 2015
  • Many studies have focused on the prediction of corporate credit rating using various data mining techniques. One of the most frequently used algorithms is support vector machines (SVM), and recently, novel techniques such as SVM+ and SVM+MTL have emerged. This paper intends to show the applicability of such new techniques to multi-classification and corporate credit rating and compare them with conventional SVM regarding prediction performance. We solve multi-class SVM+ and SVM+MTL problems by constructing several binary classifiers. Furthermore, to demonstrate the robustness and outstanding performance of SVM+MTL algorithm over other techniques, we utilized four typical multi-class processing methods in our experiments. The results show that SVM+MTL outperforms both conventional SVM and novel SVM+ in predicting corporate credit rating. This study contributes to the literature by showing the applicability of new techniques such as SVM+ and SVM+MTL and the outperformance of SVM+MTL over conventional techniques. Thus, this study enriches solving techniques for addressing multi-class problems such as corporate credit rating prediction.

SVM(Support Vector Machines)의 하드웨어 설계 및 구현 (The Hardware Design and Implementation of the Support Vector Machines)

  • 진종렬;김동성;박종서
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.592-594
    • /
    • 2004
  • 본 논문에서는 SVM의 효과적인 학습 알고리즘인 SMO(Sequential Minimal Optimization)를 하드웨어적으로 설계하고 구현하는 방법을 제시한다. SVM은 Vapnik에 의한 제안된 기계학습 방법으로 음성인식, 문자인식, BT, 보안 등 다양한 응용분야에서 기존의 신경망보다 우수한 성능을 나타내었다. 그러나 SVM은 계산량이 많아 연산속도가 느려지는 단점을 가진다. 이를 개선하기 위해 본 논문에서는 SVM의 학습 알고리즘인 SMO의 핵심인 지수함수와 실수 연산기를 VHDL로 설계하고 Mentor의 ModelSim을 이용하여 시뮬레이션하고 Synopsys의 Design Analyzer를 이용하여 합성하였다. 구현된 칩은 시뮬레이션 결과 약 50MHz의 속도로 동작하며, 이는 소프트웨어적으로 구현된 SMO보다 약 10~20배 빠른 성능을 나타내었다.

  • PDF

Support Vector Machine을 이용한 기업부도예측 (Bankruptcy Prediction using Support Vector Machines)

  • 박정민;김경재;한인구
    • Asia pacific journal of information systems
    • /
    • 제15권2호
    • /
    • pp.51-63
    • /
    • 2005
  • There has been substantial research into the bankruptcy prediction. Many researchers used the statistical method in the problem until the early 1980s. Since the late 1980s, Artificial Intelligence(AI) has been employed in bankruptcy prediction. And many studies have shown that artificial neural network(ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance, it has some problems such as overfitting and poor explanatory power. To overcome these limitations, this paper suggests a relatively new machine learning technique, support vector machine(SVM), to bankruptcy prediction. SVM is simple enough to be analyzed mathematically, and leads to high performances in practical applications. The objective of this paper is to examine the feasibility of SVM in bankruptcy prediction by comparing it with ANN, logistic regression, and multivariate discriminant analysis. The experimental results show that SVM provides a promising alternative to bankruptcy prediction.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.

수정된 kernel-adatron 알고리즘에 의한 Support Vector Machines의 학습 (Training of Support Vector Machines Using the Modified Kernel-adatron Algorithm)

  • 조용현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.469-471
    • /
    • 2000
  • 본 논문에서는 모멘트 항을 추가한 수정된 kernel-adatron 알고리즘을 제안하고 이른 support vector machines의 학습기법으로 이용하였다. 이는 기울기상승법에서 일어나는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴 속도를 좀더 개선시키는 모멘트의 장점과 kernel-adatron 알고리즘의 구현용이성을 그대로 살리기 위함이다. 제안된 학습기법의 SVM을 실제 200명의 암환자를 2부류(초기와 악성)로 분류하여 문제에 적용하여 시뮬레이션한 결과, Cambell등의 kernel-adatron 알고리즘을 이용한 SVM의 결과와 비교할 때 학습시간과 시험 데이터의 분류률에서 더욱 우수한 성능이 있음을 확인할 수 있었다.

  • PDF

Estimating Basin of Attraction for Multi-Basin Processes Using Support Vector Machine

  • Lee, Dae-Won;Lee, Jae-Wook
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.49-53
    • /
    • 2012
  • A novel method of transient stability analysis is presented in this paper. The proposed method extracts data points near the basin-of-attraction boundary and then builds a support vector machine (SVM) model learned from the generated data. The constructed SVM classifier has been shown to reduce dramatically the conservativeness of the estimated basin of attraction.