The Hardware Design and Implementation of the Support Vector Machines

SVM(Support Vector Machines)의 하드웨어 설계 및 구현

  • 진종렬 (한국항공대학교 컴퓨터공학과) ;
  • 김동성 (한국항공대학교 컴퓨터공학) ;
  • 박종서 (한국항공대학교 컴퓨터공학과)
  • Published : 2004.04.01

Abstract

본 논문에서는 SVM의 효과적인 학습 알고리즘인 SMO(Sequential Minimal Optimization)를 하드웨어적으로 설계하고 구현하는 방법을 제시한다. SVM은 Vapnik에 의한 제안된 기계학습 방법으로 음성인식, 문자인식, BT, 보안 등 다양한 응용분야에서 기존의 신경망보다 우수한 성능을 나타내었다. 그러나 SVM은 계산량이 많아 연산속도가 느려지는 단점을 가진다. 이를 개선하기 위해 본 논문에서는 SVM의 학습 알고리즘인 SMO의 핵심인 지수함수와 실수 연산기를 VHDL로 설계하고 Mentor의 ModelSim을 이용하여 시뮬레이션하고 Synopsys의 Design Analyzer를 이용하여 합성하였다. 구현된 칩은 시뮬레이션 결과 약 50MHz의 속도로 동작하며, 이는 소프트웨어적으로 구현된 SMO보다 약 10~20배 빠른 성능을 나타내었다.

Keywords