• 제목/요약/키워드: Support vector machines(SVM)

검색결과 286건 처리시간 0.031초

SVM을 이용한 유방 종양 조직 영상의 분류 (A Classification of Breast Tumor Tissue Images Using SVM)

  • 황해길;최현주;윤혜경;최흥국
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF

FRP 바닥판의 해석모델개선을 위한 System Identification 기법 (System Identification for Analysis Model Upgrading of FRP Decks)

  • 서형열;김두기;김동현;취진타오;이영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정 (Optimal Stiffness Estimation of Composite Decks Model using System Identification)

  • 서형열;김두기;김동현;취진타오;박기태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

SVM을 이용한 비선형 화학공정 모델링: pH 중화공정에의 적용 예 (Nonlinear Chemical Plant Modeling using Support Vector Machines: pH Neutralization Process is Targeted)

  • 김동원;유아림;양대륙;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제12권12호
    • /
    • pp.1178-1183
    • /
    • 2006
  • This paper is concerned with the modeling and identification of pH neutralization process as nonlinear chemical system. The pH control has been applied to various chemical processes such as wastewater treatment, chemical, and biochemical industries. But the control of the pH is very difficult due to its highly nonlinear nature which is the titration curve with the steepest slope at the neutralization point. We apply SVM which have become an increasingly popular tool for machine teaming tasks such as classification, regression or detection to model pH process which has strong nonlinearities. Linear and radial basis function kernels are employed and each result has been compared. So SVH based on kernel method have been found to work well. Simulations have shown that the SVM based on the kernel substitution including linear and radial basis function kernel provides a promising alternative to model strong nonlinearities of the pH neutralization but also to control the system.

SVMs 을 이용한 유도전동기 지능 결항 진단 (Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines)

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

지지벡터기계와 카이제곱 통계량을 이용한 스팸 블로그(Splog) 판별 시스템 (A Splog Detection System Using Support Vector Machines and $x^2$ Statistics)

  • 이성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.905-908
    • /
    • 2010
  • 본 연구의 목적은 웹 환경에서 스팸 블로그(Splog)를 자동으로 판별하는 시스템을 개발하는 것이다. 먼저 블로그의 HTML을 제거한 후 품사를 부착하였다. 어휘/품사 쌍을 자질로 사용하였으며 카이제곱 통계량을 이용하여 유용한 자질을 선택하였다. 선택된 자질의 가중치를 벡터로 표현한 후, 지지벡터 기계(Support Vector Machines)를 학습하여 자동으로 스팸 블로그를 판별하는 시스템을 제안하였으며, SPLOG 데이터 집합으로 실험한 결과 F1척도로 90.5%의 정확률을 얻었다.

  • PDF

Optimizing SVM Ensembles Using Genetic Algorithms in Bankruptcy Prediction

  • Kim, Myoung-Jong;Kim, Hong-Bae;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.370-376
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. However, its performance can be degraded due to multicollinearity problem where multiple classifiers of an ensemble are highly correlated with. This paper proposes genetic algorithm-based optimization techniques of SVM ensemble to solve multicollinearity problem. Empirical results with bankruptcy prediction on Korea firms indicate that the proposed optimization techniques can improve the performance of SVM ensemble.

에스 브이 엠을 이용한 화자인증 알고리즘의 하드웨어 구현 연구 (A Hardware Implementation of Support Vector Machines for Speaker Verification System)

  • 최우용;황병희;이경희;반성범;정용화;정상화
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.175-182
    • /
    • 2004
  • 화자인증이란 생체인식 방법 중의 하나로 사람의 목소리를 이용하여 사용자를 인증하는 방법이다. 현재까지 가장 많이 사용되는 화자인증 알고리즘으로는 HMM(Hidden Markov Model)과 DTW(Dynamic Time Warping)를 들 수 있는데, 이들 알고리즘은 사용자의 등록 및 인증을 위해 많은 수의 특징벡터를 필요로 하므로 스마트 카드와 같은 메모리가 제한된 시스템에는 적용하기 어려운 단점이 있다. 본 논문에서는 SVM(Support vector Machine)을 이용함으로써 적은 양의 메모리와 적은 계산량으로 화자인증을 수행할 수 있는 방법을 제안하였으며, 이의 실시간 처리를 위해 하드웨어 구조를 제시하였다. 한국어 4연숫자 데이터베이스를 이용하여 제안한 알고리즘의 성능을 평가한 결과, 기존 알고리즘에 비해 약간의 에러율 증가가 있었으나 수행시간 및 모델크기에서는 상당한 감소를 나타내었다. SVM을 이용한 화자인증 알고리즘을 하드웨어로 구현한 결과, 소프트웨어로 구현한 경우에 비해서 훈련시간은 175분의 1, 인증시간에서는 6분의 1의 감소를 나타내었다.