• 제목/요약/키워드: Support vector machine (SVR)

검색결과 64건 처리시간 0.019초

VTS 관제 구역 내 조류의 영향과 항적 이동에 따른 해양 사고 분석 방법 (Analysis of Marine Accident based on Impact of Tidal Stream and Vessel Tracking in VTS Are)

  • 김주성;정중식;강승호;임세욱
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 춘계학술대회
    • /
    • pp.246-247
    • /
    • 2018
  • 관제구역 내 항로는 주요 항만의 항계를 포함하고 있기 때문에 지리적 여건에 따라 선박 통항량이 증가하고 항로가 협소한 구간이 존재한다. 또한, 대한민국 서해안에 위치한 항만과 그 관제구역의 경우 큰 조석간만의 차로 인하여 선박 조선에 있어 강한 조류의 영향을 받게 된다. 본 논문에서는 항로 상 조류의 흐름에 따른 선박 항적 이동의 특성을 분석하여 항해 환경 변화에 따른 유의미한 정보를 생산하는 방법을 제시하고 실제 해양 사고 사례에 적용하여 그 유효성을 검증하였다. 모델 추출을 위하여 SVR seaway model, 지지벡터 회귀 모형과 격자 탐색을 통한 모수 결정을 수행하였다.

  • PDF

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.

서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교 (Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea)

  • 강은진;유철희;신예지;조동진;임정호
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1739-1756
    • /
    • 2021
  • 대기 중 이산화질소(NO2)는 주로 인위적인 배출요인으로 발생하며 화학 반응을 통해 이차오염 물질 및 오존 형성에 매개 역할을 하는 인체 건강에 악영향을 미치는 물질이다. 우리나라는 지상 관측소에 의한 실시간 NO2 모니터링을 수행하고 있지만, 이는 점 기반의 관측 값으로써 미관측 지역의 공간 분포 분석이 어렵다는 한계점을 지닌다. 본 연구에서는 선형 회귀 기반 모델인 다중 선형 회귀와 회귀 크리깅, 기계학습 알고리즘인 Random Forest (RF), Support Vector Regression (SVR)을 적용한 공간 내삽 모델링을 통해 서울 지역의 지상 NO2 농도 지도를 제작하였고, 일별 Leave-One-Out Cross Validation (LOOCV) 교차 검증을 시행하였다. 2020년 연구기간 내 일별 LOOCV에서 MLR, RK, SVR 모델의 일별 평균 Index of agreement (IOA)는 약 0.57로 유사한 성능을 보였으며, RF (0.50)보다 높은 성능이 확인되었다. RK의 일별 평균 nRMSE는 0.9483%으로 MLR (0.9501%)보다 상대적으로 낮은 오차를 나타냈다. MLR과 RK, RF 모델의 계절별 공간 분포는 비슷한 양상을 보였으며, RF는 다른 모델에 비해 좁은 NO2 농도 범위가 확인되었다. 본 연구에서 제안된 선형 회귀 기반 공간 내삽은 지상 NO2 뿐 아니라 다른 대기 오염 물질의 도시 지역 공간 내삽을 위해 활용 가능성이 높을 것으로 기대된다.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

Form-finding of lifting self-forming GFRP elastic gridshells based on machine learning interpretability methods

  • Soheila, Kookalani;Sandy, Nyunn;Sheng, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.605-618
    • /
    • 2022
  • Glass fiber reinforced polymer (GFRP) elastic gridshells consist of long continuous GFRP tubes that form elastic deformations. In this paper, a method for the form-finding of gridshell structures is presented based on the interpretable machine learning (ML) approaches. A comparative study is conducted on several ML algorithms, including support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), AdaBoost, XGBoost, category boosting (CatBoost), and light gradient boosting machine (LightGBM). A numerical example is presented using a standard double-hump gridshell considering two characteristics of deformation as objective functions. The combination of the grid search approach and k-fold cross-validation (CV) is implemented for fine-tuning the parameters of ML models. The results of the comparative study indicate that the LightGBM model presents the highest prediction accuracy. Finally, interpretable ML approaches, including Shapely additive explanations (SHAP), partial dependence plot (PDP), and accumulated local effects (ALE), are applied to explain the predictions of the ML model since it is essential to understand the effect of various values of input parameters on objective functions. As a result of interpretability approaches, an optimum gridshell structure is obtained and new opportunities are verified for form-finding investigation of GFRP elastic gridshells during lifting construction.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • 제38권5호
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

Machine learning-based techniques to facilitate the production of stone nano powder-reinforced manufactured-sand concrete

  • Zanyu Huang;Qiuyue Han;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Nejib Ghazouani;Shtwai Alsubai;Abed Alanazi;Abdullah Alqahtani
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.533-539
    • /
    • 2023
  • This study aims to examine four machine learning (ML)-based models for their potential to estimate the splitting tensile strength (STS) of manufactured sand concrete (MSC). The ML models were trained and tested based on 310 experimental data points. Stone nanopowder content (SNPC), curing age (CA), and water-to-cement (W/C) ratio were also studied for their impacts on the STS of MSC. According to the results, the support vector regression (SVR) model had the highest correlation with experimental data. Still, all of the optimized ML models showed promise in estimating the STS of MSC. Both ML and laboratory results showed that MSC with 10% SNPC improved the STS of MSC.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression

  • Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.11-26
    • /
    • 2022
  • One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.