Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.3.265

Assessment of wall convergence for tunnels using machine learning techniques  

Mahmoodzadeh, Arsalan (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Mohammadi, Mokhtar (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University)
Ibrahim, Hawkar Hashim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil)
Mohammed, Adil Hussein (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil)
Rashidi, Shima (Department of Computer Science, College of Science and Technology, University of Human Development)
Publication Information
Geomechanics and Engineering / v.31, no.3, 2022 , pp. 265-279 More about this Journal
Abstract
Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.
Keywords
feature selection; machine learning applications; tunnel construction; tunnel convergence;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et. al. (2011), "Scikit-learn: Machine learning in python (2011)", J. Machine Learn.g Res., 12, 2825-2830.
2 Rafiai, H. and Moosavi, M. (2012), "An approximate ANN-based solution for convergence of lined circular tunnels in elasto-plastic rock masses with anisotropic stresses", Tunn. Undergr. Sp. Tech., 27(1), 52-59. https://doi.org/https://doi.org/10.1016/j.tust.2011.06.008   DOI
3 Rasmussen, C.E. and Williams, C.K.I. (2016), "Gaussian processes for machine learning", The MIT Press.
4 Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunnelling and Underground Space Technology, 38, 348-356. https://doi.org/https://doi.org/10.1016/j.tust.2013.07.014   DOI
5 Sterpi, D., and Gioda, G. (2009). "Visco-Plastic Behaviour around Advancing Tunnels in Squeezing Rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8.   DOI
6 Torabi-Kaveh, M. and Sarshari, B. (2020), "Predicting Convergence rate of Namaklan twin tunnels using machine learning methods", Arabian Journal for Science and Engineering, 45(5), 3761-3780. https://doi.org/10.1007/s13369-019-04239-1.   DOI
7 Trinh, M.C. and Jun, H. (2021), "Stochastic vibration analysis of functionally graded beams using artificial neural networks", Struct. Eng. Mech., 78(5), 529-543. https://doi.org/10.12989/sem.2021.78.5.529.   DOI
8 Vapnik, V.N. (2000), "The nature of statistical learning theory. New York: Springer", Edition Number: 2, ISBN 978-1-4757-3264-1. DOI: 10.1007/978-1-4757-3264-1   DOI
9 Vu, T.M., Sulem, J., Subrin, D., Monin, N. and Lascols, J. (2013), "Anisotropic closure in squeezing rocks: The example of saint-martin-la-porte access gallery", Rock Mech. Rock Eng., 46(2), 231-246. https://doi.org/10.1007/s00603-012-0320-4.   DOI
10 Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022). "Machine learning approaches to enable resource forecasting process of road tunnels construction", Communication Engineering and Computer Science, North America, mar. 2022. Available at: . Date accessed: 21 Sep. 2022. http://doi.org/10.24086/cocos2022/paper.718.
11 Mahmoodzadeh, A. and Zare, S. (2016), "Probabilistic prediction of expected ground condition and construction time and costs in road tunnels", J. Rock Mech. Geotech. Eng., 8(5), 734-745. https://doi.org/https://doi.org/10.1016/j.jrmge.2016.07.001.   DOI
12 Kontogianni, V., Psimoulis, P. and Stiros, S. (2006), "What is the contribution of time-dependent deformation in tunnel convergence?", Eng. Geol., 82(4), 264-267. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.11.001.   DOI
13 Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Nejati, H.R., Noori, K.M.G., Ibrahim, H.H. and Hama Ali, H.F. (2021a), "Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts", Tunn. Undergr. Sp. Tech., 116, 104109. https://doi.org/10.1016/j.tust.2021.104109.   DOI
14 Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Hama Ali, H.F. and Salim, S.G. (2021b), "Dynamic reduction of time and cost uncertainties in tunneling projects", Tunn. Undergr. Sp. Tech., 109, 103774. https://doi.org/10.1016/j.tust.2020.103774.   DOI
15 Nomikos, P., Rahmannejad, R. and Sofianos, A. (2011), "Supported axisymmetric tunnels within linear viscoelastic burgers rocks", Rock Mech. Rock Eng., 44(5), 553-564. https://doi.org/10.1007/s00603-011-0159-0.   DOI
16 Kostinakis, K.G. and Morfidis, K.E. (2020), "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.   DOI
17 Liu, X., Liu, Y., Lu, Y. and Kou, M. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 407-423. https://doi.org/10.12989/sem.2020.74.3.407.   DOI
18 Mahdevari, S., Shirzad Haghighat, H. and Torabi, S.R. (2013), "A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation", Tunn. Undergr. Sp. Tech., 38, 59-68. https://doi.org/https://doi.org/10.1016/j.tust.2013.05.002.   DOI
19 Aktas, G. and Ozerdem, M.S. (2020), "Displacement prediction of precast concrete under vibration using artificial neural networks", Struct. Eng. Mech., 74(4), 559-565. https://doi.org/10.12989/sem.2020.74.4.559.   DOI
20 Adoko, A.C., Jiao, Y.Y., Wu, L., Wang, H. and Wang, Z.H. (2013), "Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network", Tunn. Undergr. Sp. Tech., 38, 368-376. https://doi.org/10.1016/j.tust.2013.07.023.   DOI
21 Adoko, A.C. and Wu, L. (2012), "Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system (ANFIS) approach", J. Rock Mech. Geotech. Eng., 4(1), 11-18. https://doi.org/https://doi.org/10.3724/SP.J.1235.2012.00011 .   DOI
22 Asadollahpour, E., Rahmannejad, R., Asghari, A. and Abdollahipour, A. (2014), "Back analysis of closure parameters of Panet equation and Burgers model of Babolak water tunnel conveyance", Int. J. Rock Mech. Min. Sci., 68, 159-166. https://doi.org/https://doi.org/10.1016/j.ijrmms.2014.02.017.   DOI
23 Altman, N.S. (1992), "An introduction to kernel and nearest-neighbor nonparametric regression", The American Statistician, 46(3), 175-185. doi:10.1080/00031305.1992.10475879.   DOI
24 Debernardi, D. and Barla, G. (2009), "New viscoplastic model for design analysis of tunnels in squeezing conditions", Rock Mech. Rock Eng., 42(2), 259. https://doi.org/10.1007/s00603-009-0174-6.   DOI
25 Hajihassani, M., Abdullah, S.S., Asteris, P.G. and Armaghani, D.J. J.A.S. (2019), "A gene expression programming model for predicting tunnel convergence", Appl. Sci., 9(21), 4650. https://doi.org/10.3390/app9214650.   DOI
26 Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using Artificial Neural Networks", Tunn. Undergr. Sp. Tech., 28, 218-228. https://doi.org/https://doi.org/10.1016/j.tust.2011.11.002.   DOI
27 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
28 Mahdevari, S., Torabi, S.R. and Monjezi, M. (2012), "Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon", Int. J. Rock Mech. Min. Sci., 55, 33-44. https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.06.005   DOI
29 Feng, X., Jimenez, R., Zeng, P. and Senent, S. (2019), "Prediction of time-dependent tunnel convergences using a Bayesian updating approach", Tunn. Undergr. Sp. Tech., 94, 103118. https://doi.org/https://doi.org/10.1016/j.tust.2019.103118.   DOI
30 Gonzalez el Alamo, J.A. and Jimenez, R. (2011), "Prediction of convergences in rock tunnels excavated by conventional methods", Proceedings of the 12th ISRM Congress, Beijing, China. https://doi.org/10.1201/b11646-319.   DOI
31 Kaminski, B., Jakubczyk, M. and Szufel, P. (2017), "A framework for sensitivity analysis of decision trees", Central Eur. J. Operations Res., 26(1),135-159. https://doi.org/10.1007/s10100-017-0479-6. PMC 5767274.   DOI
32 Nadimi, S., Shahriar, K., Sharifzadeh, M. and Moarefvand, P. (2011), "Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional Distinct Element Method", Tunn. Undergr. Sp. Tech., 26(1), 155-162. https://doi.org/https://doi.org/10.1016/j.tust.2010.09.002.   DOI
33 Guan, Z., Jiang, Y. and Tanabashi, Y. (2009), "Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling", Tunn. Undergr. Sp. Tech., 24(3), 250-259. https://doi.org/https://doi.org/10.1016/j.tust.2008.08.001.   DOI
34 Quinlan, J.R. (1987), "Simplifying decision trees", Int. J. Man-Machine Studies, 27(3), 221-234. CiteSeerX 10.1.1.18.4267. doi:10.1016/S0020-7373(87)80053-6.   DOI
35 Sakurai, S. (1978), "Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face", Int. J. Numer. Anal. Method. Geomech., 2(2), 159-175. https://doi.org/10.1002/nag.1610020205.   DOI
36 Schulz, H. and Behnke, S. (2012), "Deep Learning", Kunstl Intell 26, 357-363. https://doi.org/10.1007/s13218-012-0198-z   DOI
37 Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic Burger's material under hydrostatic stress field", Tunn. Undergr. Sp. Tech., 25(4), 297-304. https://doi.org/https://doi.org/10.1016/j.tust.2010.01.002.   DOI