• Title/Summary/Keyword: Support structure

Search Result 3,309, Processing Time 0.027 seconds

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

Design and Optimization of Vibration-resistant and Heat-insulating Support Structure of Fuel Cylinder for LNG Vehicles (차량용 LNG 연료 용기의 내진동 단열지지구조 설계 및 최적화)

  • Kwon, Hyun-Wook;Hwang, In-Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.6-11
    • /
    • 2014
  • To optimize the design of fuel cylinder for LNG vehicles, we introduced the design parameters of the inner and the outer tank of the vessel support structure by analyzing the structural characteristics of conventional design. We selected the inner and outer diameter of the hollow support bars and a dimension of the inner structure of the vessel among the design parameters for design optimization. In this study the temperature distribution and thermal stress of the support structure were evaluated by using the utility program as MSC/MARC. The evaluation criteria are first mode natural frequency, total transferred energy through support structure and thermal stress. The developed design satisfied the design criteria and it was made of prototype. The prototype was verified through three-dimensional vibration testing and thermal performance test.

Trueness of 3D printed partial denture frameworks: build orientations and support structure density parameters

  • Hussein, Mostafa Omran;Hussein, Lamis Ahmed
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • PURPOSE. The purpose of the study was to assess the influence of build orientations and density of support structures on the trueness of the 3D printed removable partial denture (RPD) frameworks. MATERIALS AND METHODS. A maxillary Kennedy class III and mandibular class I casts were 3D scanned and used to design and produce two 3D virtual models of RPD frameworks. Using digital light processing (DLP) 3D printing, 47 RPD frameworks were fabricated at 3 different build orientations (100, 135 and 150-degree angles) and 2 support structure densities. All frameworks were scanned and 3D compared to the original virtual RPD models by metrology software to check 3D deviations quantitatively and qualitatively. The accuracy data were statistically analyzed using one-way ANOVA for build orientation comparison and independent sample t-test for structure density comparison at (α = .05). Points study analysis targeting RPD components and representative color maps were also studied. RESULTS. The build orientation of 135-degree angle of the maxillary frameworks showed the lowest deviation at the clasp arms of tooth 26 of the 135-degree angle group. The mandibular frameworks with 150-degree angle build orientation showed the least deviation at the rest on tooth 44 and the arm of the I-bar clasp of tooth 45. No significant difference was seen between different support structure densities. CONCLUSION. Build orientation had an influence on the accuracy of the frameworks, especially at a 135-degree angle of maxillary design and 150-degree of mandibular design. The difference in the support's density structure revealed no considerable effect on the accuracy.

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

An improvement to seismic design of substation support structures

  • Mohammadi, Reza Karami;Akrami, Vahid;Nikfar, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.821-835
    • /
    • 2013
  • The acceleration that the electrical equipment experiences on a structure can be several times the ground acceleration. Currently, substation support structures are being designed according to ASCE (Substation Structure Design Guide 2008), without any consideration about effects of these structures on dynamic behavior of mounted equipment. In this paper, a parametric study is implemented in order to improve seismic design of candlestick substation structures based on this design guide. To do this, dynamic amplification factor (DAF) of different candlestick support-equipment combinations is evaluated and compared to the target DAF presented in IEEE STD 693 (2006). Based on this procedure, a new criterion is developed to restrict maximum acceleration at support-equipment intersection.

A Study on the Modeling of Relative Motion for the Cargo Tank Support Structure of Type A LPG Carrier (독립탱크 A형 LPG선 탱크 지지구조 해석을 위한 상대운동의 모델링에 관한 연구)

  • Lee, Kwang-Yong;Yang, Park-Dal-Chi;Park, Chi-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • Type A LPG Carrier is the ship using the low temperature independent cargo tank separate from the hull, which has various support structures for laying independent tanks on the hull. In this paper, the direct strength analysis for the support structures has been performed through the direct load analysis, load transfer, stress analysis and strength assessment. Also, a rational modeling method of support structures has been proposed to obtain the dynamic load between the hull and the separate tank.

Dynamic state estimation for identifying earthquake support motions in instrumented structures

  • Radhika, B.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.359-378
    • /
    • 2013
  • The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.

Analytical Discussion on Stochastic Hydrodynamic Modeling of Support Structure of HAWAII WTG Offshore Wind Turbine

  • Abaiee, M.M.;Ahmadi, A.;Ketabdari, M.J.
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • Floating structure such as tension leg platform, semi-submersible and spar are widely used in field of oil exploration and renewable energy system. All of these structures have the base cylinder support structure which have effective rule in overall dynamic of response. So the accurate and reliable modeling is needed for optimum design and understanding the physical background of these systems. The aim of this article is an analytical discussion on stochastic modeling of floating cylinder based support structure but an applicable one. Due to this a mathematical mass-damper-spring system of a floating cylinder of HAWAII WTG offshore wind as an applicable and innovative system is adopted to model a coupled degrees using random vibration in analytical way. A fully develop spectrum is adopted to solve the stochastic spectrum analytically by a proper approximation. Some acceptable assumption is adopted. The simplified but analytical and innovative hydrodynamic analysis of this study not only will help researcher to concentrate more physically on hydrodynamic analysis of floating structures but also can be useful for any quick, simplified and closed form analysis of a complicated problem in offshore engineering.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

The Structural Relationship among Social Support, Parenting Stress, Self-perception and Parenting Behavior Perceived by Mother (어머니가 지각하는 사회적 지지와 양육스트레스, 자아인식 및 양육행동 간의 구조적 관계)

  • Kim, Hye-Gum;Jo, Hye-Young
    • Journal of Families and Better Life
    • /
    • v.33 no.6
    • /
    • pp.1-14
    • /
    • 2015
  • The purpose of this study was to explore structural relationships among social support, parenting stress, self-perception and parenting behavior perceived by mother and provide preliminary data useful for desirable parenting behavior. For this purpose, the data of fourth wave Panel Study on Korean Children(PSKC) including social support, parenting stress, self-perception and parenting behavior measured by 1,746 mothers with 3-year-old children were analyzed. We identified structural relationships among the variables using SPSS 18.0 and AMOS 18.0 applying structural equation modeling. Measurement model and structure model had favorable goodness of fit and the results of structure models on each path were as follows. First, parenting behavior had positive correlations with social support and self-perception but there was a negative correlation between parenting behavior and parenting stress. Second, the relationship between social support and self-perception was mediated by parenting stress and parenting stress and self-perception mediated the relationship between social support and parenting relationship. In conclusion it is required to raise awareness about the importance of development of various parent education programs and parenting behavior.