• 제목/요약/키워드: Support leg

검색결과 156건 처리시간 0.023초

Influence of the Condition with and without External Support on the Strength of Hip Flexor in Supine in Subjects without Core Stabilization

  • Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • 제32권6호
    • /
    • pp.335-340
    • /
    • 2020
  • Purpose: This study was performed to investigate the influence of the condition with and without external support on the strength of hip flexor in supine position in subjects without core stabilization. Hip flexor muscles are very functional in the hip joint structures. Therefore, it is essential to evaluate the strength of hip flexor in a clinical and precise way. Methods: Twenty subjects participated in this study. The double bent leg-lower test was used to evaluate subjects without core stabilization. The strength of hip flexor muscles was evaluated in supine position, both with and without external support condition. The paired t-test was used to compare the strength of hip flexor muscles according to external support. The level of statistical significance was at α=0.05. The intra-rater reliability of the repeated measures of hip flexor strength was estimated by calculating the intra-class correlation coefficients (ICC). Results: In subjects without core stabilization, the strength of hip flexor in supine was greater with external support than that without external support (p<0.05). In addition, the intra-rater reliability with an ICC (3, 1) of the strength measurement of hip flexor with external support was higher than that without external support. Conclusion: In subjects without core stabilization, the condition with external support can contribute to the strength of hip flexor in supine position and the strength measurement of hip flexor should be considered with the condition with and without external support.

유동모드 MR 댐퍼가 구비된 대퇴의족의 설계 및 해석 (Design and Analysis of Above Knee Prosthetic Leg Using MR Damper)

  • 박진혁;강제원;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.165-171
    • /
    • 2016
  • A prosthetic knee for above-knee (AK) amputee is categorized into passive and active type. The passive prosthetic knee is generally made by elastic material. Although AK amputee can easily walk by using passive prosthetic leg, knee joint motions are not similar to ordinary persons. The active prosthetic leg can control the knee angle owing to the actuator and microprocessor. However, the active type is not cost-effective and the stability may be lost due to the malfunction of sensors. In order to resolve these disadvantages of passive and active type, a semi-active prosthetic knee which can control the knee angle is proposed in this work. The proposed semi-active one requires a less input energy but provides active type performance. In order to achieve this goal, in this work, a semi-active prosthetic knee using magneto-rheological (MR) damper for AK amputees is designed. The MR damper can support the weight of body by using less energy than actuator of active prosthetic. It can control knee angle by inducing the magnetic field at the time of stance phase. This salient characteristic is evaluated and presented in this work.

닫힌-사슬 운동이 뇌졸중 환자의 체중지지율과 균형능력에 미치는 영향 (The Effect of Closed-Chain Exercise on Weight Supporting Rate and Balance Ability in Stroke Patients)

  • 김희권
    • PNF and Movement
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 2011
  • Purpose : The purpose of this study is to analyze the effect of closed-chain exercise on weight supporting rate change within hemiplegic side and static dynamic balance ability in stroke patients. Methods : The subjects of the study were 13 hemiplegic patients who carried out closed-kinematic chain exercise program over 6 weeks. The exercises of the program are stand to sit with stall bar, stair-up & down by a hemiplegic leg and bridging exercise crossing the non-hemiplegic leg onto the hemiplegic leg. Each exercise was carried out over 3 sets of 10reps. Results : The results of this study were summarized as follows: 1. After intervention, there was a statistically significant change in the weight supporting rate within hemiplegic and non-hemiplegic side(P<0.05). 2. After intervention, there was a statistically significant change in the static balance(FICSIT-4) ability(P<0.05). 3. After intervention, there was a statistically significant change in the dynamic balance(FSST, TUG, FRT) ability(P<0.05). Conclusion : The results of the study suggests that closed-chain exercise program in stroke patients improves their weight supporting rate and enhance the static dynamic balance.

The Effects of Simulated Mild Leg Length Discrepancy on Gait Parameters and Trunk Acceleration

  • Jung, Soo-jung;An, Duk-hyun;Shin, Sun-shil
    • 한국전문물리치료학회지
    • /
    • 제25권4호
    • /
    • pp.9-18
    • /
    • 2018
  • Background: Leg length discrepancy (LLD) leads to many musculoskeletal disorders and affects daily activities such as walking. In the majority of the population, mild LLD is a common condition. Nevertheless, it is still controversy among researchers and clinicians on the effects of mild LLD during gait, and available studies have largely overlooked this issue. Objects: The purpose of the present study is to investigate the effects of mild LLD on the gait parameters and trunk acceleration. Methods: A total of 15 female and male participants with no evidence of LLD of >.5 ㎝ participated in the present study. All participants walked under the following two conditions: (1) The non-LLD condition, where the participants walked in shoes of the same heel height; (2) A mild LLD condition induced by wearing a 1.5 ㎝ higher heel on the right shoe. The GAITRite system and tri-axial accelerometer were used to measure gait parameters and trunk acceleration. To compare the variation of each variable, a paired t-test was performed. Results: Compared to the non-LLD condition, step time and swing phase were significantly increased in the mild LLD condition, while stance phase, single support phase, and double support phase significantly decreased in the short limb (p<.05). In the long limb of the mild LLD condition, single support phase significantly increased, while swing phase significantly decreased (p<.05). Furthermore, significant decrease in the gait velocity and cadence in the mild LLD condition were observed (p<.05). In the comparison between both limbs in the mild LLD condition, the step time and swing phase of the short limb significantly increased compared with the long limb, while step length, stance phase, and single support phase of the long limb significantly increased compared with the short limb (p<.05). Additionally, trunk acceleration of all directions (anterior-posterior, medial-lateral, vertical) significantly increased in the mild LLD condition (p<.05). Conclusion: The results of the present study demonstrate that mild LLD causes altered and asymmetrical gait patterns and affects the trunk, resulting in inefficient gait. Therefore, mild LLD should not be overlooked and requires adequate treatment.

Dynamic behavior of TLP's supporting 5-MW wind turbines under multi-directional waves

  • Abou-Rayan, Ashraf M.;Khalil, Nader N.;Afify, Mohamed S.
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.203-216
    • /
    • 2016
  • Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD's), and plan stability for all configurations.

단일레이저거리센서를 탑재한 실내용이동서비스로봇의 사람추종 (Human following of Indoor mobile service robots with a Laser Range Finder)

  • 유윤규;김호연;정우진;박주영
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.86-96
    • /
    • 2011
  • The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.

동력학 모델을 이용한 인체 동작 제어 (Human Motion Control Using Dynamic Model)

  • 김창회;오병주;김승호
    • 대한인간공학회지
    • /
    • 제18권3호
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

발보조기가 자세동요에 미치는 효과 (Effects of Foot orthotic on Postrual sway)

  • 송창호;이승원
    • The Journal of Korean Physical Therapy
    • /
    • 제16권2호
    • /
    • pp.99-107
    • /
    • 2004
  • The purpose of this study was to investigate the effect of foot orthotic on postural sway. Subjects were 15 patients(7 men and 8 women) who prescribed foot orthotic at B hospital and L rehabilitation medicine clinic in Seoul. Postural sway during a single limb stance was measured using the CMS 10 Measuring System when subjects positioned on the balance trainer under two treatment conditions(orthotic and nonorthotic). RCSP(resting calcaneal stance position) while subjects were standing on the glass plate was measured using the angle finder after subjects were positioned in prone to divide equally lower leg and calcaneus using the goniometer. The result was as follows. There were significant difference between postural sway of orthotic and nonorthotic conditions(t=4.888, 4.589, p<0.001), and the leg of the small RCSP within a subject has the small postural sway index($x^2=26.000$, p<0.001). In conclusion, foot orthotics provide structural support for detecting and controlling postural sway in patients prescribed foot orthotics.

  • PDF

동력학기반 인체 모델 연구 (A Study of Human Model Based on Dynamics)

  • 김창희;김승호;오병주
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.485-493
    • /
    • 1999
  • Human can generate various posture and motion with nearly 350 muscle pairs. From the viewpoint of mechanisms, the human skeleton mechanism represents great kinematic and dynamical complexity. Physical and behavioral fidelity of human motion requires dynamically accurate modeling and controling. This paper describes a mathematical modeling, and dynamic simulation of human body. The human dynamic model is simplified as a rigid body consisting of 18 actuated degrees of freedom for the real time computation. Complex kinematic chain of human body is partitioned as 6 serial kinematic chains that is, left arm, right arm, support leg, free leg, body, and head. Modeling is developed based on Newton-Euler formulation. The validity of proposed dynamic model, which represents mathematically high order differential equation, is verified through the dynamic simulation.

  • PDF

도립 진자형 이족보행로봇을 위한 안정보행 (Stable Walking for an Inverted Pendulum Type Biped Robot)

  • 강찬수;노경곤;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.456-459
    • /
    • 2003
  • This paper deal with the biped walking stability by inverted pendulum type balancing joints. This model is hard to interpretation for the nonlinearity caused by upper direction movement then conventional model which have roll and prismatic joints. We can interpret this model by a linear approximation or interpolation method. This paper use a linear approximation method that can decide a movement of upper direction. Inverted pendulum type balancing joints have a advantage of less movement for keep stability and similar with human than conventional model and this model can be used for humanoid robot. We can see a stability of biped by ZMP(Zero Moment Point). Genetic algorithm is used for trajectory planning that is important for stable walking of biped.

  • PDF