• Title/Summary/Keyword: Support Position

Search Result 1,004, Processing Time 0.026 seconds

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application (재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Position Improvement of a Human-Following Mobile Robot Using Image Information of Walking Human (보행자의 영상정보를 이용한 인간추종 이동로봇의 위치 개선)

  • Jin Tae-Seok;Lee Dong-Heui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.398-405
    • /
    • 2005
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Also, the control method is proposed to estimate position and direction between the walking human and the mobile robot, and the Kalman filter scheme is used for the estimation of the mobile robot localization. And its performance is verified by the computer simulation and the experiment.

A study on reduction of structural vibration of an intake manifold system (흡기다기관 시스템의 구조진동 저감에 대한 연구)

  • 윤성호;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF

The Effects of Job Demand and Job Resources on Burnout and Work Engagement of Hospital Nurse Administrators (직무요구와 직무자원이 병원행정직 간호사의 소진과 조직몰입에 미치는 영향)

  • Cha, Woo Jung;Kim, Soukyoung
    • Korean Journal of Occupational Health Nursing
    • /
    • v.29 no.4
    • /
    • pp.262-272
    • /
    • 2020
  • Purpose: This study aims to investigate the degree of job demand, job resources, burnout, and the organizational commitment of administrative nurses based on the job demands-resources model. Further, it seeks to confirm the influencing factors affecting nurses' burnout and organizational commitment. Methods: The participants were 188 administrative nurses working at hospitals (one tertiary hospital and six general hospitals) located in D City. The collected data were analyzed with IBM SPSS Statistics 23.0 using frequency, percentage, mean, standard deviation, t-tests, ANOVA, Pearson's correlation coefficient, and multiple regression analysis. Results: The influential factors of burnout were role conflict (β=.50), job demand (β=.18), job position (β=-.17, team leaders and above), and social support (β=-.15). The regression model had an explanatory power of 59%. The influential factors of organizational commitment were appropriate rewards (β=.59), job position (β=.15, team leader or above), working department (β=.14, referral center and health screening administration department), and social support (β=.18). The regression model had an explanatory power of 59.5%. Conclusion: The results support the job demands-resources model, and interventions should be developed to decrease job demand and provide sufficient job resources.

Body Impedance Control for Walking Stabilization of a Quadrupedal Robot (4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어)

  • Lee, Soo-Yeong;Hong, Ye-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-480
    • /
    • 2005
  • The overall performance of AC servo system is greatly affected the uncertainties of unpredictable mechanical parameter variations and external load disturbances. To overcome this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an on-line identification method of mechanical parameters/load disturbances for AC servo system using support vector regression(SVR). The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with time-varying/nonlinear parameters.

Comparison of Absolute and Differential ECT Signals around Tube Support Plate in Steam Generator

  • Shin, Young-Kil;Lee, Yun-Tai;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In this paper, absolute and differential eddy current signals from various defects in the steam generator tube are numerically predicted and their signal slope characteristics are investigated. The signal changes due to frequency increase are also observed. After studying signal patterns from various defects and frequencies, the analysis of mixed defect signals affected by the presence of a ferromagnetic support plate is attempted. For the signal prediction, axisymmetric finite element modeling is used and this leads us to the slope angle analysis of the signal. Results show that differential signals are useful for locating the position of a defect under the support plate, while absolute signals are easy to presume and interpret even though the effect of support plate is mixed. Combined use of these two types of signals will help us accomplish a more reliable inspection.

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.