• Title/Summary/Keyword: Support Plate

Search Result 426, Processing Time 0.022 seconds

Geographical Study on the Boundary Dispute of Ieodo Sea between Korea and China (한.중 간 이어도해(海) 영유권(領有權)분쟁에 관한 지리학적 고찰)

  • Song, Sung-Dae
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.414-429
    • /
    • 2010
  • With regard to Ieodo, South Korea and China argue that Ieodo belongs to their territory respectively, considering its history. However, both parties haven't suggested concrete evidence to support their argument. Even if they suggest corroborative facts, they are distorted or exaggerated like myth. Therefore, it is important by what side primitive title and effective control are exercised in settling the problem of Ieodo. The issue was to suggest coherence logic by finding concrete geographical facts in the East China Seat the time of applying a method of boundary decision followed by the marine act, namely principle of median line and principle of equidistance. China has argued that China should occupy most of continental shelf in the East China Sea on the basis of silt, a deposit of the continent. However, the base of the East China Sea is a part of Eurasian Plate. In addition, a geographical contribution to formation of the continent shelf by the Korean Peninsula is equal to the Chinese Continent. Ieodo is 'Island of mythos' in China, but is 'Island of legend' suggested by concrete facts in South Korea. Therefore, its cultural titile and primitive title are belonged to South Korea, before its historical title.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

A Study on the Hydraulic Stability of Fuel Rod for the Advanced $16{\times}16$ Fuel Assembly Design ($16{\times}16$ 개량핵연료 연료봉의 수력적 안정성에 관한 연구)

  • Jeon Sang-Youn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.347-360
    • /
    • 2005
  • The fuel rod instability can be occurred because of the axial and cross flow due to the flow anomaly and/or flow redistribution in the lower core plate region of the pressurized water reactor. The fuel rod vibration due to the hydraulic instability is one of the root causes of fuel failure. The verification on the fuel rod vibration and instability is needed for the new fuel assembly design to verify the fuel rod instability. In this study, the fuel rod vibration and stability analyses were performed to investigate the effect of the grid height, fuel rod support condition, and span adjustment on the fuel rod vibration characteristics for the advanced $16{\times}16$ fuel assembly design. Based on the analysis results, the grid height and grid axial elevation of the advanced $16{\times}16$ fuel assembly design were proposed.

A Study on the Criteria for the Earthquake Safety Evaluation of Fill Dams (필댐의 내진 성능 평가 기준에 대한 고찰)

  • Choo, Yun-Wook;Lee, Sei-Hyun;Kim, Mu-Kwang;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.19-31
    • /
    • 2011
  • The current Korean criteria for seismic performance evaluated by dynamic analysis regulates that the horizontal displacement and vertical settlement of a dam body, including the static deformation, should be within 1% of the dam height. However, there has been weak theoretical support, so that the current criteria have to be validated. Korea is in a region of low or moderate seismicity located inside the Eurasian plate, and few earthquakes with considerable magnitudes and intensities have been recorded in the area. Therefore, in this study, published data measured in overseas countries were collected in order to construct a database and validate the current criteria. In addition, dynamic centrifuge tests and a parametric study using numerical simulations were performed in order to investigate the effect on the horizontal displacement and settlement of a dam body and to validate the current criteria.

Property Prediction of Rupture Disc by Using Finite Element Analysis (유한요소해석을 이용한 파열판의 특성 예측)

  • Han, Chang-Yong;Lee, Seong-Beom;Jung, Hee-Suk;Kim, Tae-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • High pressure devices are used widely. Interest in rupture disc to people is the increases in protect of facilities and people. A rupture disc consists of mainly three parts: holder, plate and vacuum support. Rupture discs are rusted or destroyed by diverse environments. Rupture discs are made from STS 316L stainless steel because of its high corrosion resistance and yield strength. In this study, modeling of a rupture disc by CATIA V5 and finite element analysis by ANSYS were carried out. The finite element analysis results executed to predict properties of the rupture disc with thickness and height.

  • PDF

Butt Weldability of Shipbuilding Steel AH36 Using Laser-Arc Hybrid Welding (조선용 강판 AH36의 레이저-아크 하이브리드 용접시 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Suh, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.901-906
    • /
    • 2016
  • The purpose of this study is to improve productivity by implementing one-pass full penetration welding using laser-arc hybrid welding for AH36. On increasing the thickness of the plate, a higher power of laser and arc was required to obtain full penetration. However, increasing the power of heat source caused undercut defects at both ends of the bead. This undercut was prevented by controlling the parameters of welding voltage and pulse correction. Hardness measurement and tensile test were conducted to apprehend the mechanical properties of weld. Also, by carrying out the microstructure observation for laser and arc regions, microstructural properties were understood.

Alveolar bone thickness around maxillary central incisors of different inclination assessed with cone-beam computed tomography

  • Tian, Yu-lou;Liu, Fang;Sun, Hong-jing;Lv, Pin;Cao, Yu-ming;Yu, Mo;Yue, Yang
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • Objective: To assess the labial and lingual alveolar bone thickness in adults with maxillary central incisors of different inclination by cone-beam computed tomography (CBCT). Methods: Ninety maxillary central incisors from 45 patients were divided into three groups based on the maxillary central incisors to palatal plane angle; lingual-inclined, normal, and labial-inclined. Reformatted CBCT images were used to measure the labial and lingual alveolar bone thickness (ABT) at intervals corresponding to every 1/10 of the root length. The sum of labial ABT and lingual ABT at the level of the root apex was used to calculate the total ABT (TABT). The number of teeth exhibiting alveolar fenestration and dehiscence in each group was also tallied. One-way analysis of variance and Tukey's honestly significant difference test were applied for statistical analysis. Results: The labial ABT and TABT values at the root apex in the lingual-inclined group were significantly lower than in the other groups (p < 0.05). Lingual and labial ABT values were very low at the cervical level in the lingual-inclined and normal groups. There was a higher prevalence of alveolar fenestration in the lingual-inclined group. Conclusions: Lingual-inclined maxillary central incisors have less bone support at the level of the root apex and a greater frequency of alveolar bone defects than normal maxillary central incisors. The bone plate at the marginal level is also very thin.

Relationship between Ground Reaction Force and Attack Time According to the Position of Hand Segments during Counter Attack in Kendo

  • Hyun, Seung Hyun;Jin, HyeonSeong;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the relationship between ground reaction force (GRF) and attack time according to the position of hand segments during counter attack in Kendo. Method: The participants consisted of 10 kendo athletes (mean age: $21.50{\pm}1.95yr$, mean height: $175.58{\pm}5.02cm$, mean body weight: $70.96{\pm}9.47kg$) who performed standard head strikes (A) and counter attack with a preferred hand position of +10 cm (B), 0 cm (C), and -10 cm (D). One force-plate (AMTI-OR-7., USA) was used to collect GRF data at a sample rate of 1,000 Hz. The variables analyzed were the attack time, medial-lateral GRF, anterior-posterior GRF (AP GRF), peak vertical force (PVF), and loading rate. Results: The total attack time was shorter in types A and C than in types C and D. The AP GRF, PVF, and loading rate had significantly higher forces in types C and D than in types A and C. The attack time (bilateral and unilateral leg support and total) was positively correlated with the GRF variables (vertical GRF and loading rate) during the counter attack in Kendo (r = 0.779 [$R^2=0.607$], p < 0.001). Conclusion: The positions of the hand segments can be changed by various conditions of the opponent in Kendo competitions; however, the position preferred by an individual can promote the successful ratio of the counter attack.

The Characteristics Analysis of Track of Laser Metal Deposition Using AISI M2 Powder (AISI M2 파우더를 이용한 레이저 메탈 디포지션의 트랙 특성 분석)

  • Kim, WonHyuck;Song, MyungHwan;Park, InDuck;Kang, DaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, the characteristics analysis of LMD track, such as including track structure, track wear resistance and track thickness, were analyzed to enhance the deposition efficiency using a diode-pumped disk laser. SKD61 hot work steel plate and Fe based AISI M2 alloy were used as a the substrate and powder for the LMD process, respectively. The laser power, track pitch and powder feed rate among LMD parameters were adopted to estimate the deposition efficiency. As the laser power is increased, heat input and melting pool on the substrate is grown also increases, so resulting in the increased LMD track thickness was increased. Through EPMA mapping analysis of the cross-section in the LMD track, it was observed that all the elements are evenly distributed inside. Therefore, the entire hardness in the LMD track is expected to be almost uniform regardless of location. The characteristics of the LMD specimen were excellent compared to the STD11 specimen in terms of the wear track width and the wear rate as well as the coefficient of friction. Especially the wear rate of LMD specimen has been significantly reduced by 60 % or more. From Based on the experimental results, the prediction formula of LMD thickness was calculated by using laser power, track pitch and powder feed rate.

Seismic Evaluation of Supporting Reactions for the Bridge with Various Curvatures and Skew Angles (지진하중 하에서 교량 곡률과 사각 크기에 따른 받침부의 반력 검토)

  • Park, Seong-Ryel;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study has addressed to evaluate the effects of radius of curvature and skew angle on the negative reaction in a plate girder bridge with LRB (Lead Rubber Bearing) supports. As analytical parameters, various radius of curvatures and skew angles were selected and two seismic loads of El-Centro and artificial earthquakes were applied to the bridge in the longitudinal and transverse directions. As results of 3D analysis, the possibility of negative reaction is shown at the part of acute angle and inner side of the curved bridge, and becomes increased when seismic load is applied in the transverse direction. In addition, the occurrence of negative reaction is found to be increased as both radius of curvature and skew angle decrease, which means that curved bridge has higher possibility of negative reaction than straight one. Conclusively, all of earthquake wave, gradient, radius of curvature and skew angle should be considered together to investigate the possibility of negative reaction at the bridge support subject to seismic load.