• Title/Summary/Keyword: Support Motion

Search Result 589, Processing Time 0.021 seconds

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Effects of tube-support parameters on damping of heat exchanger tubes in liquids (튜브지지대 인자가 열교환기 튜브의 감쇠에 미치는 영향)

  • 김범식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1003-1015
    • /
    • 1988
  • Damping information is required to analyse heat exchangers for flow-induced vibration. The most important energy dissipation mechanisms in heat exchanger tubes are related to the dynamic interaction between tube and support. In liquids, squeeze-film damping is dominat. Simple experiments were carried out of a two-span tube with one intermediate support to investigate the effects of tube-support parameters, such as: tube-support thickness, diametral clearance, tube eccentricity, tube span length, location of tube-support, and nature of dynamic interaction between tube and tube-support. The results show that squeeze-film damping is much larger for lateral-type motion than for rocking-type motion at the support. Eccentricity was found to be very important. Diametral clearance, support thickness and frequency are also very relevant. The effects of these parameters on squeeze-film damping are formulated and proposed in a semi-empirical expression.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

Motion Response Characteristics of Small Fishing Vessels of Different Sizes among Regular Waves

  • DongHyup Youn;LeeChan Choi;JungHwi Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The motion of small fishing vessels is significantly affected by small waves, leading to accidents, such as capsizing or sinking. This paper presents the results of two types of basin tests. The first test analyzed the characteristics of roll and pitch motions among regular waves with the same wave steepness using the drifting state of three (3G/T, 7G/T, 10G/T) small fishing vessels. The second test analyzed the motion characteristics of the 7G/T fishing vessel under different wave steepness. The first test showed that heave and roll motions are significant in the beam sea, while pitch motion is significant in the bow and stern seas. The second test shows that wave steepness has a linear relationship with roll and pitch motions in the bow and stern seas.

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

Longitudinal Kinematical Analysis of Kip to Swallow Motion in Rings (링 운동 차오르며 Swallow 동작 처치 전.후의 기술분석)

  • Back, Jin-Ho;Park, Jong-Hoon;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.173-181
    • /
    • 2006
  • The purpose of this study is grasp the problem of the gymnast, Kim, Dong-Hwa's Kip to Swallow Motion in Rings, and make up for the weak points to help him to perform a better performance. Therefore, two tryouts for $28^{th}$ Athens Olympic Games were filmed using video camera then finalized with Kinematical Analysis using 3D motion analysis program followings are the form of conclusions. 1. In the very first tryout, when he was doing a Swallow Support Scale, his CM position was high and arm slope was deduction because when he was doing Kip, the ascent velocity was low and he tried excessively to pull him on rings due to relying upon angular movement of shoulder joint. 2. When he was doing drop, he let his hip angle bend only little bit and let fall so making shoulder angle wider and maintain the level horizontally occurs strong drop motion when vertical descent is happening. 3. As a result, lowering the direction of a kick makes CM's movement path lower, increase vertical ascent velocity, and it helps to do the Swallow Support motion in short period of time. 4. After a strong drop motion, which is deep and fast, would make rope of ring shake so there is a defect that the body moves to forward area. However, it does not effect in Swallow Support Scale motion. 5. In the second tryout, trunk rotation angle and arm slope was fixed decrease while doing rotary motion. When rotary motion was happening, before the body was going under the rings, maintained his arm slope horizontally so his Swallow Support Scale motion was nearly perfect.

Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion (기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법)

  • Kim, Hyo-Gun;Choi, Kwang-Kyu;Eom, Young-Ho;Kwon, Young-Rog
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Biomechanical Analysis of Arch Support Devices on Normal and Low Arch (정상족과 편평족의 Arch Support 사용에 따른 운동역학적 분석)

  • Park, Seung-Bum;Park, Jae-Young;Kim, Kyung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2010
  • The purpose of this study was to the kinetic variables effects from the use of arch support inserts on low-arched people. We selected 10 people for the research and separated them into 2 groups, 5 people for the normal arched group and 5 people for the low arched group. Each group wear shoes which have a 3 step convertible arch support (level 0, level 2, level 5) and we measured their foot pressure and 3D motion analysis data. As a result, we found that the mean pressure at the heel of the low arched group was decreased when using the arch supports. The arch support induced the correct grounding area for the foot and dispersion of foot pressure. 3D motion analysis found that as the height of the arch support was increased, the movement of the Y-axis(inversion-eversion) was increased to relieve the shock to the heel. The arch support insert limited the range of motion(ROM) of the Z-axis(abduction-adduction) of the low arched person's ankle joint and prevented ankle injury caused by the excessive eversion when walking. Low arched people are seen to be easily tired due to the ineffective shock absorption of the knees and abnormal walking motion. In order to improve the problems, a 3 step convertible arch support(level 5) insert would improve the low-arched people's walking ability. In other words, the low arched people should be expected to walk as well as normal arched people when they wear shoes with the arch support insert.

Soil-Structure Interaction Analysis of Suspension Bridge for Multiple-Support Seismic Input (다지지점 지진입력에 대한 현수교의 지반-구조물 상호작용해석)

  • 김재민;이명규;신용우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.182-189
    • /
    • 2003
  • Member actions of long-span suspension bridge due to multiple-support motion are generally larger than those for synchronous support motion frequently employed in aseismic design of a conventional structure. In this study, all the sources of the asynchronous support motion are considered including the loss of coherence and the soil-structure interaction as well as the time delay due to wave propagation of seismic waves. The substructure technique analyzing total soil-foundation-structure system as a superposition of two sub-structures including soil-foundation system and structure itself is employed for the seismic response analysis of the suspension bridge. Finally, an application example is presented to demonstrate applicability of the proposed methodology.

  • PDF