• Title/Summary/Keyword: Supply water

Search Result 3,471, Processing Time 0.028 seconds

The Present State and Behavior Characteristics of Water Supply Tunnel (수로터널의 유지관리 현황 및 거동특성)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.179-190
    • /
    • 2006
  • The water supply tunnel has different characteristics which play a important role in stable water supply to the public from mechanical behavior and maintenance in comparison with road md railway tunnel. In this study, the present state and characteristics of water supply tunnels controlled by K-water have been investigated. The distribution of effective stresses that takes into account the effect of seepage forces induced by internal water pressure are estimated from closed-form and numerical method. The analysis of stress-strain behavior, seepage problem and hydrojacking for ensuring safety of existing water supply tunnel against neighboring new construction has been conducted.

  • PDF

Evaluation of the Irrigation Water Supply of Agricultural Reservoir Based on Measurement Information from Irrigation Canal (수로부 계측정보 기반 농업용 저수지의 관개용수 공급량 평가)

  • Lee, Jaenam;Noh, Jaekyoung;Kang, Munsung;Shin, Hyungjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.63-72
    • /
    • 2020
  • With the implementation of integrated water management policies, the need for information sharing with respect to agricultural water use has increased, necessitating the quantification of irrigation water supply using monitoring data. This study aims to estimate the irrigation water supply amount based on the relationship between the water level and irrigation canal discharge, and evaluate the reliability of monitoring data for irrigation water supply in terms of hydrology. We conducted a flow survey in a canal and reviewed the applicability of the rating curve based on the exponential and parabolic curves. We evaluated the reliability of the monitoring data using a reservoir water balance analysis and compared the calculated results of the supply quantity in terms of the reservoir water reduction rate. We secured 26 readings of measurement data by varying the water levels within 80% of the canal height through water level control. The exponential rating curve in the irrigation canal was found to be more suitable than the parabolic curve. The irrigation water supplied was less than 9.3-28% of the net irrigation water from 2017 to 2019. Analysis of the reservoir water balance by applying the irrigation water monitoring data revealed that the estimation of the irrigation water supply was reliable. The results of this study are expected to be used in establishing an evaluation process for quantifying the irrigation water supply by using measurement information from irrigation canals in agricultural reservoirs.

Uncertainty of Water Supply in Agricultural Reservoirs Considering the Climate Change (미래 기후변화에 따른 농업용 저수지 용수공급의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.11-23
    • /
    • 2014
  • The impact and adaption on agricultural water resources considering climate change is significant for reservoirs. The change in rainfall patterns and hydrologic factors due to climate change increases the uncertainty of agricultural water supply and demand. The quantitative evaluation method of uncertainty based on agricultural water resource management under future climate conditions is a major concern. Therefore, it is necessary to improve the vulnerability management technique for agricultural water supply based on a probabilistic and stochastic risk evaluation theory. The objective of this study was to analyse the uncertainty of water resources under future climate change using probability distribution function of water supply in agricultural reservoir and demand in irrigation district. The uncertainty of future water resources in agricultural reservoirs was estimated using the time-specific analysis of histograms and probability distributions parameter, for example the location and the scale parameter. According to the uncertainty analysis, the future agricultural water supply and demand in reservoir tends to increase the uncertainty by the low consistency of the results. Thus, it is recommended to prepare a resonable decision making on water supply strategies in terms of using climate change scenarios that reflect different future development conditions.

The development of the water supply system in North Korea (북한 상수도의 발전과정)

  • Kim, Seung-Hyun;Shin, Jong-Dae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.143-152
    • /
    • 2021
  • It is investigated in this study how the water supply system has been developed in North Korea. Articles published in the Rodong Newspaper (North Korea official newspaper) were mainly reviewed for this purpose. It was found in this study that the development of the water supply system in the North Korea was affected by their socioeconomic situations. Their water supply development was categorized into six groups in this study since the first water supply system built in Pyongyang (1910); Occupation period (1910~1945); Introduction period (1946~1950); Restoration period (1951~1960); Advancement period (1961~1970); New village period (1971~1974); Depression period (1974~).

Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization (다목적 활용을 위한 화천댐 용수공급능력 평가 연구)

  • Lee, Eunkyung;Lee, Seonmi;Ji, Jungwon;Yi, Jaeeung;Jung, Soonchan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.437-446
    • /
    • 2022
  • In April 2020, the Korean government decided to operate the Hwacheon reservoir, a hydropower reservoir to supply water, and it is currently under pilot operation. Through the pilot operation, the Hwacheon reservoir is the first among the hydropower reservoirs in Korea to make a constant release for downstream water supply. In this study, the water supply capacity of the Hwacheon reservoir was estimated using the inflow data of the Hwacheon reservoir. A simulation model was developed to calculate the water supply that satisfies both the monthly water supply reliability of 95% and the annual water supply reliability of 95%. An optimization model was also developed to evaluate the water supply capacity of the Hwacheon reservoir. The inflow data used as input data for the model was modified in two ways in consideration of the impact of the Imnam reservoir. Calculating the water supply for the Hwacheon reservoir using the two modified inflows is as follows. The water supply that satisfies 95% of the monthly water supply reliability is 26.9 m3/sec and 24.1 m3/sec. And the water supply that satisfies 95% of the annual water supply reliability is 23.9 m3/sec and 22.2 m3/sec. Hwacheon reservoir has a maximum annual water supply of 777 MCM (Million Cubic Meter) without failure in the water supply. The Hwacheon reservoir can supply 704 MCM of water per year, considering the past monthly power generation and discharge patterns. If the Hwacheon reservoir performs a routine operation utilizing its water supply capacity, it can contribute to stabilizing the water supply during dry seasons in the Han River Basin.

A Study on the Effective Operating System for Water Supply of Andong Dam Considering the Flow of Nak-dong River (낙동강하류 유황을 고려한 안동댐의 효율적인 용수공급방안에 관한 연구)

  • Lee, Che-Chan;Jang, Suk-Hwan;Lee, Chang-Hae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.129-136
    • /
    • 2008
  • The purpose of this study is to find an effective operating system for water supply of Andong Dam. The reliability of water supply was assessed by HEC-5 model based on operated water supply data of Andong Dam and data of Jin-dong water level gauge station in Nak- dong river. In addition, estimated additional amount of water supply was evaluated for each alternative by additional retention of Andong Dam in rainy season from June to September. As the result, additional amount of water supply of each alternative in non-rainy season (excluding rainy season) is increased as $1.35m^3/s{\sim}2.12m^3/s$, it shows that additional amount of water supply can be made by effective operating system for water supply in every dam as Andang Dam.

Multiple Regression Equations for Estimating Water Supply Capacities of Dams Considering Influencing Factors (영향요인을 고려한 댐 용수공급능력 추정 회귀모형)

  • Kang, Min Goo;Lee, Gwang Man
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1131-1141
    • /
    • 2012
  • In this study, factors that influence water supply capacities of dams are extracted using factor analysis, and multiple regression equations for estimating water supply capacities of dams are developed using the analysis results. Twenty-one multi-purpose dams and twelve Municipal and Industrial (M&I) water supply dams are selected for case studies, and eight variables influencing water supply capacities of dams, namely: watershed area, inflow, effective reservoir storage, grade on amount of M&I water supply, grade on amount of agricultural water supply, grade on amount of in-stream flow supply, grade on river administration, and grade on average rainfall, are determined. Two case studies for multi-purpose dams and M&I water supply dams are performed, employing factor analysis, respectively. For the two cases, preliminary tests, such as reviewing matrix of correlation coefficient, Bartlett's test of sphericity, and Kaiser-Meyer-Olkin (KMO) test, are conducted to evaluate the suitability of the variables for factor analysis. In case of multi-purpose dams, variables are grouped into three factors; M&I water supply dams, two factors. The factors are rotated using Varimax method, and then factor loading of each variable is computed. The results show that the variables influencing water supply capacities of dams are reasonably selected and appropriately grouped into factors. In addition, multiple regression equations for predicting the amounts of annual water supply of dams are established using the factor scores as explanatory variables, it is identified that the models' accuracies are high, and their applications to determining effective storage capacity of a dam during dam planning and design steps are presented. Consequently, it is thought that the variables and factors are useful for dam planning and dam design.

Feasibility Study on Introduction of Decentralized Water Supply System for Improving Water Security and Sustainability (물안보 및 지속가능성 제고를 위한 분산형 용수공급시스템의 도입 타당성에 관한 연구)

  • Kim, Kwan-Yeop;Kim, Seong-Su;Park, No-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2014
  • Decentralized water supply systems, treating the water in users'vicinity, cutting down the distribution system, utilizing the alternative water resources(rainwater harvesting, water reclamation and reuse and so on.) and saving energy and other resources, could be categorized into POU(Point-Of-Use), POE(Point-Of-Entry) and community small scale system. From the literature review, we could thought that decentralized water supply system and hybrid system(integrating centralized and decentralized water supply system within urban water management) might have strengthening comparative advantages to centralized system with respect to: (1) water security, (2) sustainability, (3) economical affordability. Even though it is difficult to derive and quantify direct benefit advantages from decentralized and hybrid system in comparison with centralized system, (1) operational cost reduction, (2) assurance for safe and stability water supply and (3) greenhouse gas reduction can be expected from successful establishment of the former.

The Replacement Plans for Aged Public Water Supply Pipes in Apartment Buildings : Especially Apartment Buildings in Bucheon (공동주택의 노후 급수관 개선방안에 관한 연구 : 부천시 공동주택을 중심으로)

  • Lee, Yong-Hwa;Heo, Yong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.228-232
    • /
    • 2015
  • The water supply galvanized steel pipes of apartment buildings in Bucheon city constructed with building permission before 1994 have many problems such as leaks, the water containing rust, and low water pressure due to corrosion. Therefore, this study aims to find a way to renew the water supply pipes under investigation through a survey. As a result, when replacing the galvanized steel pipe with the corrosion-resistant pipe, the water supply system should also be changed from the gravity tank system to the booster pump system and the hygienic water storage tank. It is necessary to redraft the long-term repair plan including the replacement of the water supply system. Also, it is necessary to save the allowance reserve according to the modified long-term repair plan.

The Supply Water Algorithm for a Condensing Gas Boiler Control (콘덴싱가스보일러 제어를 위한 공급수알고리즘)

  • Han, Do-Young;Yoo, Byeong-Kang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.