• Title/Summary/Keyword: Supply rate

Search Result 2,631, Processing Time 0.029 seconds

CFD Analysis on the Flow Uniformity of a $CO_2$ Enrichment System (CFD를 이용한 온실 $CO_2$ 시비 시스템의 유량 균일성 해석)

  • Yim, Kyungjin;Kim, Hongjip;Lee, Sangmin;Park, Kyoung-Sub
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • $CO_2$ enrichment systems have been recently used to shorten the growth period of plants and the improvement of harvest and its quality. To accomplish these goals, manifold should be designed to supply the same amount of $CO_2$. In this study, CFD approach has been used to understand the effects of geometric parameters, such as tube and hole diameters. An optimized geometry has been derived through pipe and tube part, respectively. As a result, the deviation of flow rate less than 0.1 g/s was expected at all holes of the $CO_2$ enrichment system.

A Mathematical Model for Estimating Proper Taxi Fleet Size : Focusing on Pyeong-Taek City Case Study (택시총량산정을 위한 수리모형의 개발 : 평택시를 중심으로)

  • Kim, Suk Hee;Choi, Keechoo;Choi, Doo Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.633-639
    • /
    • 2011
  • To estimate a proper fleet size of taxi, a daily archived tachograph was analyzed for both corporate taxi and owner-driver taxi. Mathematical model to estimate a desirable number of taxi was developed using city's characteristics of Pyeong-taek city case. This model could be used as coefficient of determination of city's characteristics model(revised R square) was 0.970. a total amount of taxi number in the future for the city of Pyeong-taek. As a result, the model produced a proper fleet size of Pyeong-taek city in the future as 1,794 taxis by 2014, which was higher in number by 214 taxis, compared to 2009. Also, the model of the service rate, considering operation condition, was used to analyze a total number of taxies. As a result, the model showed a total number of taxis as 1,224 taxis by 2014, which is lower in number by 356 taxies, compared to 2009. It is desirable to use both city's characteristics model and the service rate model to estimate a total number of taxis in conclusion. As a result of adopting average value from two model, the model produced a total supply plan of Pyeong-taek city as 1,509 taxis by 2014, which is smaller than in number by 71 taxis, compared to 2009.

Effect of Vapor Pressure Deficit on the Evapotranspiration Rate and Graft-taking of Grafted Seedling Population under Artificial Lighting (인공광하에서 접목묘 개체군의 증발산속도와 활착에 미치는 포차의 영향)

  • Yong Hyeon Kim;Chul Soo Kim;Ji Won Lee;Sang Gyu Lee
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.232-236
    • /
    • 2001
  • Four air temperature levels of 23, 25, 27 and 29$^{\circ}C$, three humidity levels of 85, 90 and 95% R.H. at photosynthetic photon flux (PPF) of 50 $\mu$mol.m$^{-2}$ .s$^{-1}$ were provided to investigate the effect of vapor pressure deficit on the evapotranspiration rate (EVTR) and graft-taking of watermelon grafted seed-increase. Thus EVTR of grafted seedlings increased with increasing air temperature at high humidity of 95%R.H. At relatively low humidity of 85% R.H., grafted seedlings showed a high EVTR and some wilting of scions was observed at this condition. This result would be ascribed to the low supply of water to vascular bundles according to the insufficient joining of scions and rootstocks. Differences in EVTR between 90% R.H. and 95% R.H. were not observed. Grafted seedlings showed high graft-taking at high relative humidity. Relative humidity had highly influenced to the graft-taking as compared to the air temperature. Graft-taking increased with decreasing vapor pressure deficit. Graft-taking greater than 90% was found at vapor pressure deficit less than 0.4kPa which could be obtained at humidity higher than 90% R.H. Therefore it is required to control the humidity higher than 90% R.H. for suppressing EVTR of grafted seedlings and preventing some wilting of scoins and thus enhancing the graft-taking of grafted seedlings.

  • PDF

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

Biological Co2 Fixation to Antioxidant Carotenoids by Photosynthesis Using the Green Microalga Haematococcus pluvialis (광합성 녹색 미세조류 Haematococcus pluvialis를 이용한 이산화탄소 고정화 및 항산화성 카로티노이드 생산)

  • Kang, Chang Duk;Park, Tai Hyun;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • As one of the $CO_2$ reduction strategies, a biological method was proposed to convert $CO_2$ to useful biomass with antioxidant carotenoids by photosynthetic microorganisms. One of the photoautotrophs, Haematococcus pluvialis is a freshwater green microalga and accumulates the secondary carotenoid astaxanthin during induction of green vegetative cells to red cyst cells. In this study, $CO_2$ fixation and astaxanthin production using H. pluvialis was conducted by photoautotrophic culture in the $CO_2$ supplemented photo-incubator. Maximum growth rate of H. pluvialis was obtained at a 5% $CO_2$ environment on basic N and P conditions of NIES-C medium. The photoautotrophic induction consisted of 5% $CO_2$ supply and high light illumination promoted astaxanthin synthesis in H. pluvialis, yielding an astaxanthin productivity of $9.6mg/L{\cdot}day$ and a $CO_2$ conversion rate of $27.8mg/L{\cdot}day$ to astaxanthin. From the results the sequential photoautotrophic culture and induction process using H. pluvialis is expecting an alternative $CO_2$ reduction technology with a function of valuable biosubstance production.

Humidification of Air Using Water Injector and Cyclonic Separator (관 내 삽입 인젝터와 사이클론을 이용한 공기 가습)

  • Kim, Beom-Jun;Kim, Sung-Il;Byun, Su-Young;Kim, Min-Soo;Kim, Hyun-Yoo;Kwon, Hyuck-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.491-498
    • /
    • 2010
  • Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Design and Implementation of a Cardiac Arrest Supporting System Using Wearable Device (웨어러블 기기를 사용한 심정지 환자 지원 시스템의 설계 및 구현)

  • Jang, Jin-Soo;Lee, Seo-Joon;Lee, Kwang-In;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.227-238
    • /
    • 2017
  • Cardiac arrest is a serious intensive emergency disease that causes death within less than several minutes by depriving the body and brain of blood supply. Survival rate of cardiac arrest patients outside of hospitals is especially low. This is because pedestrians usually do not perceive the patient as a sick person, also, even if they do so, they have no medical knowledge to properly react to such emergency. The purpose of this study is to propose a solution that uses widely spread smart phones to alert pedestrians of the cardiac arrest patient, prevents cardiac arrest, and provides first-aid measures. By applying the proposed solution, cardiac arrest can be prevented in advance, pedestrians can be alerted to keep the golden time(4 minutes), and first witness can quickly proceed with CPR, ultimately enhancing the survival rate of the cardiac arrest patient.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

Effects of Feeding Frequency on Oxygen Consumption of Nile Tilapia, Oreochromis niloticus, in a Recirculating Aquaculture System (순환여과식 사육 시설에서 사료 공급 횟수에 따른 나일틸라피아, Oreochromis niloticus의 산소 소비량)

  • KIM Youhee;JO Jae-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.144-148
    • /
    • 1999
  • This study was conducted to test actual oxygen consumption rates of Nile tilapia (Oreochromis niloticus) at a commercial scale high density culture tank in the recirculating culture system, with a special emphasis on the oxygen consumption rate of this species with different daily feeding frequencies. Nile tilapia, an average of 400 g and a total wright of 390 kg, were stocked in a circular concrete tank of 2.9 m in diameter and 0.8 m in depth, in a recirculating culture system. The fish were fed commercial diet 1, 2, 5, and 9 times per day between 09:00 h and 19:00 h. feed was evenly supplied where the fish were fed more than once a day. Dissolved oxygen of influent and effluent water was monitored every 50 seconds by a computer with electrodes for 24 hours. The standard metabolic rate of tilapia was $39.31{\pm}4.4mg\;O_2/kg$ fish/hr in the present study. The maximum oxygen consumption was reached between 30 to 50 minutes after feeding. The maximum oxygen consumption levels of 1, 2, 5, and 9 feeding times per day were 161.2, 123.4, 111.1 and 111.1 mg $O_2/kg$ fish/hr, respectively. While the mean oxygen consumption levels of 1, 2, 5, and 9 feeding times per day were $79.9{\pm}21.5,\;81.3{\pm}14.8,\;84.2{\pm}9,9$ and $98,9{\pm}11.0mg\;O_2/kg$ fish/hr, respectively. These results show that oxygen consumption rates are not much different between the feeding frequencies. These results could be used to design to provide desirable oxygen supply system in the recirculating high-density tilapia culture system.

  • PDF