• Title/Summary/Keyword: Supply pressure

Search Result 1,237, Processing Time 0.041 seconds

The Influence of the Supply Chamber Configuration on Under-Expanded Swirling Jets (노즐 챔버 형상이 부족팽창 스월제트 유동에 미치는 영향에 관한 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.586-591
    • /
    • 2003
  • The present study addresses experimental results to investigate the effect of the jet supply chamber configuration on the sonic/supersonic swirling jets, as the case study. The experiment is carried out using the convergent nozzle with a various different chamber configurations upstream the nozzle throat, which is composed of four tangential inlet holes for the swirling flows. The jet pressure ratio is varied between 3.0 and 7.0. The sonic/supersonic swirling jet flows are specified by the pitot impact and static pressure measurements and visualized using the Shadowgraph method. The results show that the major structures of the sonic/supersonic swirling jet are strongly influenced by the jet supply chamber.

  • PDF

An Experimental Study on the Pressure Differentials during the Pressurized Air Supply to the Elevator Lobby (부속실 급기가압제연시 차압변화에 관한 실험적 연구)

  • Kim, Bum-Kyu;Park, Yong-Hwan;Kim, Hong-Sik
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.110-119
    • /
    • 2009
  • A fire should be accompanied by the heat and smoke. However, smoke is considered main cause of heavy casualties. Smoke easily spreads away from the fire area to remote space and cause mortal wound for the resident. A technical way effectively protecting the life and property from the smoke is the smoke control system of the building. Pressurized air supply system can be considered to prevent the refuge area from the smoke infiltration that evacuate residents via evacuation route for life safety. This paper is related with performance estimation and the effectiveness of the pressurized air supply system through experiments.

  • PDF

A Study on the Effect of Gas Composition at Gas Supply Point on the Pressures in Gas Pipe Networks (가스 배관망에서 인입가스의 조성이 배관망 내 압력에 미치는 영향에 관한 연구)

  • Chang, Seung-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.1-4
    • /
    • 2007
  • Natural gas has different gas composition according to imported gas region, and the difference of gas composition affects pressure loss value occurred in pipe networks, Therefore, using real gas composition instead of averaged gas composition can obtain more reliable results for pipe network analysis. In this study, the effect of real gas composition at gas supply points on the demand pressure has been analyzed. To compare the results, the calculated pressure values for averaged gas composition at all the supply points have been used. From the results, we found that the effect of real gas composition consideration on demand pressure was considerable, and the real gas composition has to be considered for reliable pipe network analysis in gas industry.

  • PDF

Stability Analysis of the CNG Storage Cavern in Accordance with Design Parameters (설계변수에 따른 압축천연가스 저장 공동의 거동 분석)

  • Park, Yeon-Jun;Moon, Hyung-Suk;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.192-202
    • /
    • 2013
  • The domestic demand of natural gas has increased continuously due to the sudden rise of oil price and regulations on greenhouse gas to global warming. In order to improve the supply security of natural gas market in Korea, the agreement on supply of pipeline natural gas (PNG) in Russia was signed between Gazprom and Korea Gas Corporation in 2008. If the supply plan of Russian natural gas is realized, underground storage facilities would be required in order to balance supply and demand of natural gas because the gas demand is concentrated in the winter. This study investigated the safety of the storage facility in quantitative way considering several design parameters such as gas pressure, depth of the storage cavern, rock condition and in-situ horizontal stress ratio. Two dimensional stress analyses were conducted using axi- symmetry condition to examine the behavior of cavern depending upon suggested design parameters. Results showed that the factor of safety, defined as the ratio of 'shear strength'/'shear stress', was largely affected by the depth, rock class and gas pressure but was insensitive to the coefficient of lateral pressure(Ko).

A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature (압력·온도 변화에 따른 초고압 발생기 성능특성 연구)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1249-1255
    • /
    • 2010
  • An ultra high- pressure system generally consists of a hydraulic power unit, an oil supply unit, an electrical power supply device, and an electrical control device. The hydraulic power unit supplies the hydraulic power to the intensifier to create generate ultra high pressure. The intensifier amplifies increases the pressure using the oil supplied from by the hydraulic power unit. The electrical supply devices and control devices maintain are provided for the electric motors, valves, and sensors. In this study, instead of a flow-control device, a pressure-control type device was mounted on a manifold block in the hydraulic power unit instead of the flow-control type. A servo valve was fitted in the intensifier, and the performance characteristics of the intensifier varied according to the variations of in the pressure cycle and with the temperature of the operating oil in the hydraulic power unit.

Data-based Analysis for Pressure Gauge Optimal Positioning in Water Supply Pipeline (상수관로 압력계 최적 위치선정을 위한 데이터기반 시험분석)

  • Lee, Hohyun;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.834-840
    • /
    • 2021
  • The management and installation methods of pressure gauges in water supply pipeline are not efficiently regulated and their installations are different in each site. In this paper, various domestic and overseas documents are examined about the pressure gauge. In order to improve the efficiency of operation management such as pipeline network and pump operation, water pressure needs to be measured as accurate as possible, by which decision making for optimal pipe network can be achieved. To get the goal, the installation of pressure gauge should be reviewed about where and how to install. In this study, an optimal horizontal distance test is conducted, in which pressure value variation is monitored and analyzed according to up and down stream distances and valve flow control, and a optimal vertical position test is also analyzed by installing the pressure gauges vertically from the up(180°) to the bottom (0°) of the pipeline.

An Experimental Study on Cushion Characteristics of pneumatic Cylinder for Vertically-Mounted. (공압 수직실린더의 쿠션특성에 관한 실험적 연구)

  • Kim, Dong-Su;Kim, Hyeong-Ui;Lee, Sang-Cheon
    • 연구논문집
    • /
    • s.28
    • /
    • pp.73-87
    • /
    • 1998
  • A pneumatic control system of compressed air as a working fluid has a variety of advantages such as low price, high respondence, non-explosion and good control performance and thus has many applications in the field of automobile, electronic and semiconductor industry. However, it has a difficulty in contolling a precise position due to quick response of system and compressibility of working fluid and. in particular, shock stress may occur due to an external load, resulting in fracture of a cylinder cap unless cushion device is equipped in the linear actuator. To avoid this, a cushion device should be installed for damping effect of the external load and the supply pressure as well as for decreasing shock stress and vibration caused by high speed rotation. Previous studies include dimensionless analyses and computer simulations of cushion capability and experiments of horizontally-mounted cylinder performances. A new attempt is experimentally made in this study using a vertically-mounted cylinder under an operation condition of 4, 5 and 6 (bar) as supply pressure and 40, 70 and 100 (kgf) as external load. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion characteristics was also revealed in the meter-in circuit.

  • PDF

An Experimental Study on the Noise Characteristics of Water Supply and Drain Installations Varied with Water Suppling Pressure in Apartment Bathroom (급수압 변화에 따른 대변기와 세면기의 급배수 소음 특성에 관한 실험적 연구)

  • Lee, Tai-Gang;Ko, Kwang-Pil;Choi, Eun-Suk;Kim, Hang;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.226-234
    • /
    • 2007
  • This study aims to evaluate noise emission from water supply and drain installations in apartment bathroom. These noise were one of the most annoying noise sources in apartment houses. Especially, drain plumbing system have used bellow bathroom ceiling, it was very discomfort to hear the noise in bellow apartment. Noise of closets and faucets were measured which were main noise source, then these noise were evaluate and analyzed the emitting characteristics varying the supplying water pressure. As increasing the water pressure, also total noise level of the water supplying stool noise and faucet noise were increased. Especially the water closet showed remarkably the increasing noise level in middle and high frequency bandwidth, while the noise level of faucets increased in $50\;Hz{\sim}250\;Hz$ of low frequency bandwidth. Vortex closet were favorable to syphon closet, and lever faucet were favorable to conventional lavatory faucet on reducing the noise. Above these results could be used in basic data establishing KS (Korean Standard) for evaluation and rating procedure and measures reducing these noise.

A Study on the Risk Assessment and Reduction of Initial Construction Cost in a Biosafety Laboratory According to Improvement of Supply and Exhaust Method (급배기 방식 개선에 따른 생물안전 밀폐시설의 Risk Assessment와 초기 건설비 저감에 대한 연구)

  • Hwang, Ji Hyun;Hong, Jin Kwan;Ju, Young Duk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.534-539
    • /
    • 2013
  • In general, entire supply air of the BSL3 laboratory should be vented to the outside for its biosafety and the air conditioning system should always be operating to maintain a room pressure difference. In this regard, annual energy consumption is approximately five or ten times greater than the magnitude of the office building. In addition, to adjust room pressure difference to the set value efficiently, the supply and exhaust duct system are installed in each room of the BSL3 lab. Thus, initial construction cost is extremely high. In this study, multizone simulation is performed to estimate maintaining the appropriate room pressure difference in the case of changing model A (each room supply and exhaust system) to model B (each zone supply and exhaust system) for verification of the BSL3 lab biosafety. Also, in the case of these two models, the multizone simulation for three kinds of biohazard scenario is performed as part of risk assessment. The analysis of initial construction cost of two models is conducted for comparison. According to the studies, initial construction cost of model B is less than about 22% of existing model A. Moreover, biosafety of the BSL3 lab is still maintaining in the case of the two models.

An Experimental Study on the Analyze the Pressure Difference in case of Fire in Vertical Space of High-Rise Buildings (고층건축물 수직공간의 화재 시 압력차 분석을 위한 실험적 연구)

  • Huh, Yerim;Kim, HyeWon;Jin, SeungHyeon;Kwon, YoungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.111-112
    • /
    • 2020
  • As buildings in South Korea become more skyscrapers, the risk of fire is also emerging. Thus, regulations, regulations, and guidelines are being improved to prevent the spread of smoke in the event of a fire in high-rise buildings, but research on smoke flow and pressure distribution in vertical spaces is insufficient. Therefore, in this study, the temperature of each floor in the vertical space according to the size of the fire is measured through the miniature model experiment, and the pressure difference is calculated to establish the basic data for the improvement of the performance of domestic air supply facilities in the future. Thus, a scale model of one-sixth the size of the actual building was produced to measure the temperature, and the pressure difference was derived by substituting the value for the expression. The pressure difference varies depending on the size of the cause of the fire, and it is believed that the differential pressure and conditions of the building should be taken into account before calculating the supply volume for the analysis of the pressure difference according to the size of the cause of the fire in the event of fire.

  • PDF