• Title/Summary/Keyword: Supply airflow control

Search Result 11, Processing Time 0.021 seconds

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

Energy Performance Evaluation of VAV System through Various Operating Strategies in Office Buildings (VAV 시스템의 현장 운전방식에 따른 에너지 성능평가)

  • 서종욱;허정호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.184-193
    • /
    • 2004
  • The purpose of this study is to evaluate the performance of various control strategies in commercial buildings which have been operated by the variable air volume (VAV) system. Two buildings in Seoul were chosen for the field study. The one (D building) combined by LonWorks has the constant airflow of supply fan and the proportional control of VAV units (damper type). The other (S building) combined by DDC has the PI control mode of the supply fan and the floating control of VAV units (venturi type). In estimating thermal comfort and energy performance through control modes of PI, PID, and CAV in the supply fan, we could identify several energy efficient operating control strategies for the VAV system.

Ventilation System Control by Location-Aware of Pollution Source (오염발생원의 위치인식에 의한 환기장치 제어방안)

  • Han, H.;Han, Jung-Il;Kwon, Yong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.405-410
    • /
    • 2006
  • This paper presents a control algorithm of supply and exhaust diffusers by recognizing a contaminant source location. CFD analysis has been conducted to calculate steady state airflow and concentration distributions in a model room, which has two supply and two exhaust openings on the ceiling. Calculations have been performed for five cases out of nine different ventilation modes by combining on/off control of the supply and exhaust openings. Local mean residual life times are obtained and compared at 9 internal points for each ventilation case. Depending on the contaminant source location, the ventilation system is operated at an optimum ventilation mode, which can results in maximum exhaust performance.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

The Individual Heat-recovery ventilation system of Residential Buildings (주거용 건물의 개별 환기시스템 필요성에 관한 연구)

  • Shin, U-Cheul;Lee, Wang-Je;Yoon, Jong-Ho;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 2014
  • Recently supply of low energy house is increasing which can enhance energy efficiency and indoor environment comfort. Low energy house have to secure air tightness as well as thermal performance so house become high airtightness and inevitably need heat recovery ventilator to enhance indoor air quality. However, most of current ventilation systems are one-click, controlling the entire space so it causes increasing of heating load and fan power which makes it hard to save energy. Thus, Individual Control system is required which can achieve both enhancing indoor air quality and decreasing heating load and electric fan power. Thereby, in this study, we analyzed the correlation between ventilation and fan power through mock-up experiment and measured ventilation load under individual control system. As a result, under the condition of $24^{\circ}C$ of indoor temperature for 6 month(November to April) in Daejeon, ventilation load by fan speed was $10.9{\sim}19.6kWh/m^2{\cdot}a$ when operated 24 hours and $7.6{\sim}13.7kWh/m^2{\cdot}a$ when operated 12 hours in night time. In addition, it is possible to reduce at most 60% of ventilation load under the individual control system; measured ventilation load was $7.4kWh/m^2{\cdot}a$ when operated 24 hours, and $5.5kWh/m^2{\cdot}$ when operated 12 hours in night time.

Control of Suspended Dust in Various Ventilation Systems of Cement Packaging Process (시멘트 포장공정에서 환기시스템에 따른 발생분진의 제어)

  • Lee, Seung-Chul;Kim, Soo-Chang;Noh, Kwang-Chul;Park, Myoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.463-469
    • /
    • 2009
  • We performed the experimental study on the control of suspended dust in a cement packaging process for various ventilation systems. To effectively remove the dust generated in the cement packaging process, three different kinds of ventilation system, such as local exhaust ventilation, electrostatic scrubber, and local air supply system, were adopted. Dust concentrations in the packaging process were measured with the variation of the airflow rate of the ventilation systems and then their ventilation performance were evaluated. From the results, we knew that the ventilation performance was the best when the local exhaust ventilation and the electrostatic scrubber were simultaneously operated in the packaging process. In the electrostatic scrubber system, the effect of the airflow rate on the indoor dust removal efficiency was negligible so hat he system ust be operated at $2,700m^3/h$ for saving power consumption.

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.