• 제목/요약/키워드: Supply air temperature

검색결과 475건 처리시간 0.027초

신조 운항실습선의 여름철 실내 온열환경 실측평가 (A Measurement and Evaluation on the Indoor Thermal Conditions in Summer of a New Training ship)

  • 신동걸;이진욱;이형기;황광일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.276-283
    • /
    • 2008
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those which are supplied and controlled by marine HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured like previous report on a newly-launched training ship during 25th through 27th of July, 2007. Followings are the results of this study. (1)The air supply volumes to each cabins are measured 250CMH(Recreation room), 800CMH(Conference room), 1.000CMH(Bridge), 5,100CMH(Lecture room) respectively. (2)The temperatures are maintained at $21{\sim}27^{\circ}C$ in almost cabins through measuring period, but the temperatures are fluctuated over ${\pm}4^{\circ}C$ at the bridge and conference room. (3)The relative humidities are shown between $40{\sim}60%$ known as comfort conditions, but the conference room is needed to dehumidified because of over 70% humidity. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of temperature diversities, only 32% among the measured data are satisfied with the comfort standard range proposed by ASHREA.

바닥복사 난방시스템의 밸브구동 특성을 고려한 실내 열환경 성능 개선 연구 (A Study on the Improvement of Indoor Thermal Performance of Floor Radiant Heating System Considering Valve Operation Characteristics)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.36-45
    • /
    • 2021
  • In this study, to improve the indoor thermal environment of the radiant floor heating system, a study was conducted on the temperature change characteristics and energy consumption according to the change of the indoor air set temperature, the supply hot water temperature and the outdoor temperature. As for the control method, the on/off control and the thermal difference proportional control method proposed through previous studies were applied. In addition, in consideration of field applicability, numerical analysis was performed for the case where the indoor air temperature sensor was affected by the wall temperature. As a result, it was found that the temperature difference proportional control method is more effective for thermal comfort and energy saving than on/off control.

에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석 (An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

스팀터빈의 공력성능 평가를 위한 공기 상사실험 (Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine)

  • 임병준;이은석;이익형;김영상;권기범
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.73-79
    • /
    • 2003
  • The steam turbine efficiency is an important factor in power plant. Accurate evaluation of steam turbine performance is essential. However, it is not easy to evaluate the steam turbine performance due to its high temperature and high pressure circumstance. Therefore most steam turbine performance tests were conducted by air similarity test. This paper described a test program for air similarity test of steam turbine at Korea Aerospace Research Institute. A test facility has been designed and built to evaluate aerodynamic performance of turbines. The test facility consists of air supply system, single stage test section, power absorption system, instrumentation and auxiliary system. For evaluation of steam turbine performance, the test of single stage axial turbine air similarity performance was conducted and uncertainty analysis was performed.

  • PDF

개인 맞춤형 국소부위 질소 냉각 장비 개발 (Development of Nitrogen Cooling Equipment for Personalized Local Area)

  • 이영지;이주현;이승호
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.913-916
    • /
    • 2020
  • 본 논문에서는 개인 맞춤형 국소부위 질소 냉각 장비 개발을 제안한다. 제안하는 장비는 크게 냉기공급모듈과 본체, 그리고 질소분사(건)으로 구성되며, 다음과 같은 특징들을 가진다. 첫 번째로 부피온도 감지센서로 피부온도를 측정한 정보를 활용하여 냉기의 공급량과 시간을 자동으로 제어하므로 완벽한 안전성 확보를 통한 기능상의 경쟁력을 가질 수 있다. 두 번째로 거리측정 센서를 적용함으로써 일정거리 이상 피부에 근접하게 되면, 제어 GUI와 연동하여 냉기를 차단하거나 질소의 배출을 조절하여 보다 높은 냉각요법의 효율을 높이면서도 안전한 관리가 가능하다. 세 번째로 질소의 공급을 조절할 수 있는 제어모듈을 설치하여 질소의 손실을 최소화하여 유지관리 비용을 최소화할 수 있다. 제안된 장비의 성능을 평가하기 위하여 외부시험기관에서 실험한 결과, 온도센서 정확도는 세계 최고 수준(±5%)보다 정확한 ±3.8%의 범위에서 측정이 되었고, 온도범위는 세계 최고 수준과 비슷한 110℃~-160℃의 범위가 측정되었다. 거리 정확도는 세계 최고 수준(±5%)보다 낮은 ±3.0%의 범위에서 측정이 되었고, 무게 정확도는 세계 최고 수준(±5%)보다 정확한 ±0.1%의 범위에서 측정이 되었다. 또한, 토출 제어는 세계 최고 수준(1단계)보다 높은 4단계가 측정되었고, 질소 사용량은 세계 최고 수준(6L/min) 이하인 0.8L/min로 측정되었다. 따라서 본 본문에서 제안한 개인 맞춤형 국소부위 질소 냉각 장비개발의 성능의 그 효용성이 입증되었다.

모세유관 바닥복사 냉·난방 시스템의 성능평가 (Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System)

  • 서유진;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

초저온 액화 천연 가스용 기화기 핀의 승온 특성에 관한 수치 해석 (Numerical Analysis on the Increasing Temperature Characteristics of Vaporizer Fin for Liquefied Natural Gas with Super Low Temperature)

  • 이중섭;공태우;이효덕;정효민;정한식
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.81-87
    • /
    • 2005
  • This study is numerical analysis on the increasing temperature characteristics of vaporizer fin for liquefied natural gas with super low temperature. Existing LNG vaporizers use the direct contact heat transfer mode where the extreme super low temperature LNG of $-162^{\circ}C$ flows inside of the tubes and about $20^{\circ}C$air flows on outside of the fin. Recently, the vaporizers with great enhanced performance compared to conventional type have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has a fixed iced. These characteristic cause a low efficiency in vaporizer, total plant cost and installing space can be increased. The vaporizing characteristics of LNG via heat exchanger with air are analytically studied for an air heating type vaporizer. This study is intended to supply the design data for the domestic fabrication of the thickness and angle vaporizer fin. Governing conservation equations for mass, momentum and energy are solved by STAR-CD based on an finite volume method and SIMPLE algorithm. Calculation parameter is fin thickness, setup angle and LNG temperature. If the vaporization performance of the early stage and late stage of operating is considered, the case of ${\phi}=90^{\circ}$ was very suitable. In this paper was estimated that the heat transfer was most promoted in case of THF=2mm.

  • PDF

공조용 열교환기 증발관에서의 서리 발생에 관한 메커니즘의 실험적 연구 (An Experimental Study on Frost Generation Mechanism from Evaporator Tube in Air Conditioning System)

  • 박상균;오철
    • 한국항해항만학회지
    • /
    • 제30권1호
    • /
    • pp.113-117
    • /
    • 2006
  • 이 실험의 목적은 튜브형 증발관에서 입구 공기 속도, 온도와 상대 습도에 따른 서리층 생성의 비교 검토에 있다. 입구 공기 속도와 온도는 각각 $0.3^m/_s,\;0.6^m/_s,\;0.9^m/_s,\;15^{\circ}C,\;20^{\circ}C,\;25^{\circ}C$로 하였고, 상대 습도는 $70\%\~90\%$로 하였다. 그리고 일반적인 공조기용 열교환기에서의 서리발생 현상을 파악하기 위하여 냉각튜브의 온도를 $-15^{\circ}C$로 일정하게 유지하였다. 그 결과 공급공기의 상대습도, 유속 및 온도가 증가할수록 서리 생성량이 증가함을 알 수 있었다.

탄소저감을 위한 3D BIM 기반 건물 에너지 효율화 방안 (3D BIM-based Building Energy Efficiency Solution for Carbon Emission Reduction)

  • 이동환;권기정;신주호;박승희
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1235-1242
    • /
    • 2013
  • 본 논문에서는 건물 내 HVAC시스템의 소비에너지 효율화를 목표로 한다. 이를 위해 건물 에너지 시뮬레이션과 유전알고리즘을 이용하여 HVAC시스템 내 급기 온도에 대한 제어 스케줄을 도출하였다. 연구 대상 건물은 90년대에 지어져 BIM이 구축되어 있지 않아 대성건물의 BIM을 구축하였고, 그 정보를 에너지 시뮬레이션 프로그램에 입력하여, 대상건물에 대한 에너지 시뮬레이션 모델을 구축하였다. 또한 실측한 소비에너지양 정보와 비교하여 대상건물 에너지 시뮬레이션을 실제 에너지 소비량 유사하게 보정하였다. 수정된 건물 에너지 시뮬레이션 모델과 유전자 알고리즘을 이용하여 에너지 효율화 급기 온도 스케줄이 작성되었다. 대상 건물에 적용되었을 때 에너지 절감 효과는 3%로 나타났다. 아직 이 분야는 설비의 제어 기법에 관한 연구가 미진하고, 주로 관리자의 경험을 통해 관리되는 측면이 있어, 에너지 시뮬레이션 프로그램에 의한 기법 개발 및 그에 대한 효과의 검증을 토대로 에너지 절감 기법에 대한 연구 및 개발이 필요하다. 본 연구는 HVAC system 제어 기법에 시발점이 될 것이다.

주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구 (Study of Pre-ventilation Effects on the Cabin Thermal Load)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.