• 제목/요약/키워드: Supply Chain Robustness

검색결과 5건 처리시간 0.021초

Supply Chain Agility: Achieving Robustness and Logistics Performance

  • Young-Kyou HA;Changjoon LEE
    • 유통과학연구
    • /
    • 제22권9호
    • /
    • pp.65-72
    • /
    • 2024
  • Purpose: This study aims to empirically analyze the influence of supply chain agility and flexibility on supply chain robustness and logistics performance, addressing a research gap in the context of dynamic business environments. Research design, data and methodology: The study examines causal relationships between supply chain agility, flexibility, robustness, and logistics performance among businesses in South Korea. Data were collected through a survey of 300 workers in supply chain-related departments. A structural equation model was employed for hypothesis testing. Results: The empirical analysis shows that supply chain agility and flexibility positively and significantly influence supply chain robustness, which in turn has a significant positive impact on logistics performance. Conclusions: This study contributes by providing empirical evidence on the importance of supply chain agility, flexibility, and robustness in enhancing logistics performance. The findings suggest prioritizing the development of these capabilities for competitive advantage. Further research on the interrelationships between various supply chain capabilities and their impact on performance outcomes is highlighted.

Measuring the Impact of Supply Network Topology on the Material Delivery Robustness in Construction Projects

  • Heo, Chan;Ahn, Changbum;Yoon, Sungboo;Jung, Minhyeok;Park, Moonseo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.269-276
    • /
    • 2022
  • The robustness of a supply chain (i.e., the ability to cope with external and internal disruptions and disturbances) becomes more critical in ensuring the success of a construction project because the supply chain of today's construction project includes more and diverse suppliers. Previous studies indicate that topological features of the supply chain critically affect its robustness, but there is still a great challenge in characterizing and quantifying the impact of network topological features on its robustness. In this context, this study aims to identify network measures that characterize topological features of the supply chain and evaluate their impact on the robustness of the supply chain. Network centrality measures that are commonly used in assessing topological features in social network analysis are identified. Their validity in capturing the impact on the robustness of the supply chain was evaluated through an experiment using randomly generated networks and their simulations. Among those network centrality measures, the PageRank centrality and its standard deviation are found to have the strongest association with the robustness of the network, with a positive correlation coefficient of 0.6 at the node level and 0.74 at the network level. The findings in this study allows for the evaluation of the supply chain network's robustness based only on its topological design, thereby enabling practitioners to better design a robust supply chain and easily identify vulnerable links in their supply chains.

  • PDF

공급사슬 회복탄력성 선행요인과 공급사슬 회복 탄력성, 기업 경영성과 간의 관계 (The Relationship between the Preceding Factors of Supply Chain Resilience, Supply Chain Resilience, and Business Performance)

  • 박찬권;서영복
    • 중소기업연구
    • /
    • 제43권2호
    • /
    • pp.1-30
    • /
    • 2021
  • 본 연구는 공급사슬 회복탄력성 선행요인들과 공급사슬 회복탄력성, 기업 경영성과 간의 관계에 대하여 분석하는 것이다. 공급사슬 회복탄력성의 선행요인으로 공급사슬통합, 위험관리활동, 가시성을 선정하였으며, 이들 요인들이 공급사슬 회복탄력성으로서 민첩성과 강건성에 미치는 영향, 민첩성과 강건성 요인이 기업 경영성과에 미치는 영향을 연구하는 것이다. 이를 위하여 우리나라의 제조 기업체를 대상으로 설문조사를 시행하였으며, 총 124부의 설문지를 연구에 활용하였다. 연구가설의 검정결과 공급사슬통합, 위험관리활동, 가시성은 민첩성과 강건성에 정(+)의 유의한 영향을 미친다. 그리고 민첩성은 기업 경영성과에 정(+)의 유의한 영향을 미친다. 그러나 강건성은 기업 경영성과에 정(+)의 영향을 미치지만 유의하지는 않았다. 이러한 연구가설 검정을 통해 중소 제조 기업들이 공급사슬 회복탄력성을 확보하기 위해서는 공급사슬통합, 위험관리활동, 가시성 역량을 확보할 필요성이 있다. 또한 민첩성과 가시성 역량은 기업 경영성과로 연결될 수 있음을 확인하였다. 그리고 공급사슬 회복탄력성의 선행요인들과 공급사슬 회복탄력성, 기업 경영성과 간의 전체적인 관계 구조에 대하여 제시하였다.

폐쇄루프공급망모델에서 역물류 활동 강화: 혼합유전알고리즘 접근법 (Reinforcing Reverse Logistics Activities in Closed-loop Supply Chain Model: Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 한국산업정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.55-65
    • /
    • 2021
  • 본 연구에서는 폐쇄루프공급망 (Closed-loop supply chain: CLSC) 모델에서 역물류 (Reverse logistics: RL) 활동을 강화하기 위한 방법론을 개발한다. 이를 위해 RL 활동 중에서 주로 고려되는 설비 중의 하나인 회복센터(Recovery center: RC)의 활동을 강화한다. RC에서의 강화된 활동에 따라 고객으로부터 회수되는 사용 후 제품은 검사 및 회복과정을 거쳐 전방향물류 (Forward logistics: FL)에서 부품 혹은 제품으로 재사용된다. 강화된 RC 활동을 가진 CLSC 모델의 운영과정을 효율적으로 표현하기 위한 수리모델이 제시되며. 혼합유전알고리즘 (Hybrid genetic algorithm: HGA) 접근법을 이용해 제안된 수리모델이 이행된다. 수치실험에서는 두 개의 상이한 형태의 CLSC 모델이 제시되며, 본 연구에서 제안된 HGA 접근법과 기존의 연구에서 제안된 몇몇 접근법들의 수행도가 비교분석되었다. 비교분석결과 HGA가 기존의 접근법들 보다 더 우수한 수행도를 보여주었다. 또한 RC 활동의 검사 및 회복과정을 거친 부품 및 제품의 비율을 다양하게 조절함으로서 강화된 RC 활동을 가진 CLSC 모델의 유용성을 증명했다.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.