• 제목/요약/키워드: Supplement learning

검색결과 173건 처리시간 0.062초

통계와 시각화를 결합한 데이터 분석: 예측모형 대한 시각화 검증 (Data analysis by Integrating statistics and visualization: Visual verification for the prediction model)

  • 문성민;이경원
    • 디자인융복합연구
    • /
    • 제15권6호
    • /
    • pp.195-214
    • /
    • 2016
  • 예측 분석은 패턴인식(Pattern recognition) 혹은 기계학습(Machine learning)으로 불리는 확률적 학습 알고리즘을 기반으로 하기 때문에 사용자가 분석 과정에 개입하여 더 많은 정보를 얻어내기 위해서는 높은 통계적 지식수준이 요구된다. 또한 사용자는 분석 결과외의 다른 정보를 확인 할 수 없고 데이터의 특성 변화와 데이터 하나하나의 특징을 파악하기 힘들다는 단점이 있다. 본 연구는 이러한 예측분석의 단점을 보완하고자 통계적인 데이터 분석 방법과 시각화 분석 방법을 결합하여 데이터 분석을 진행하였으며 통계적인 분석 방법만을 진행 할 경우 발생하는 단점을 보완하고 데이터에서 더 많은 정보를 도출해 내기 위한 방법론을 제시 하고자하였다. 이를 위해 본 연구는 영화 리뷰에서 추출한 감정 어휘가 독립변인이고 영화의 흥행 값이 종속변인인 데이터를 예제 데이터로 활용하여 진행하였다. 본 연구의 연구 방법론을 적용하였을 때의 이점은 다음과 같다. 첫째, 의사결정나무 분석에서 제시된 분할 기준이 적용될 때 마다 변하는 데이터의 패턴을 파악할 수 있다. 둘째, 제시된 최종 예측모형에 포함된 데이터들의 특성을 확인 할 수 있다. 본 연구의 시사점은 예측모형의 단점을 보완하고 데이터로부터 더 많은 정보를 추출하기 위해 통계적인 데이터 분석과 시각적인 데이터 분석을 결합하여 시행하였다는 것이다. 통계적인 분석 방법을 통해 각 변수의 관계를 파악하고 높은 예측 값을 가지는 모형을 도출하였으며, 시각화 분석에서는 인터랙션 기능을 제공함으로서 통계적으로 제시된 예측모형을 검증하고 더 다양한 정보를 도출 할 수 있게 하였다.

적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 (Radar-based rainfall prediction using generative adversarial network)

  • 윤성심;신홍준;허재영
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.471-484
    • /
    • 2023
  • 적대적 생성 신경망 기반의 딥러닝 모델은 학습된 정보를 바탕으로 새로운 정보를 생성하는데 특화되어 있다. 구글 딥마인드에서 개발한 deep generative model of rain (DGMR) 모델은 대규모 레이더 이미지 데이터의 복잡한 패턴과 관계를 학습하여, 예측 레이더 이미지를 생성하는 적대적 생성 신경망 모델이다. 본 연구에서는 환경부 레이더 강우관측자료를 이용하여 DGMR 모델을 학습하고, 2021년 8월 호우사례를 대상으로 적대적 생성 신경망을 이용하여 강우예측을 수행하고 기존 예측기법들과 정확도를 비교하였다. DGMR은 대체적으로 선행 60분까지는 강우 분포 위치가 관측강우와 가장 유사하였으나, 전체 영역에서 강한 강우가 발생한 사례에서는 강우가 지속적으로 발달하는 것으로 예측하는 경향이 있었다. 통계적 평가에서도 DGMR 기법이 1시간 선행예측에서 임계성공지수 0.57~0.79, 평균절대오차 0.57~1.36 mm로 나타나 타 기법 대비 효과적인 강우예측 기법임을 보여주었다. 다만, 생성 결과의 다양성이 부족한 경우가 발생하여 예측 정확도를 저하하므로 다양성을 개선하기 위한 연구와 2시간 이상의 선행예측에 대한 정확도 개선을 위해 물리기반 수치예보모델 예측강우 자료를 이용한 보완이 필요할 것으로 판단되었다.

대학수학교육에서의 챗GPT 활용과 사례 (Use of ChatGPT in college mathematics education)

  • 이상구;박도영;이재윤;임동선;이재화
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.123-138
    • /
    • 2024
  • 본 연구는 S대학 <인공지능을 위한 기초수학[Math4AI]> 강좌의 교수·학습과정에서 맞춤형 챗GPT를 개발하여 활용한 경험을 공유한다. 연구진은 ① 먼저 강좌 맞춤형 챗GPT (https://math4ai.solgitmath.com/)를 개발하였다. 이때 챗GPT가 부정확한 정보를 주지 않도록 수년간의 해당 강좌 주요 데이터(교재, 실습실, 토론 기록, 코드 등)를 우선적으로 학습하는 챗GPT의 기능을 적용하였다. ② 학생들이 교재를 스스로 학습하다 궁금한 부분이 생기면, 맞춤형 챗GPT 인터페이스를 통해 자연어로 수학 용어, 정리, 예제, 열린 문제 번호, 핵심어 등을 질문하여 도움을 얻을 수 있도록 하였다. 그러면 챗GPT는 관련된 주요 문제나 용어, 그리고 이전 학생들의 토론에 기반한 몇 가지 샘플 답안 또는 토론 내용과 함께 사용되었던 코드 샘플을 제공한다. ③ 학생들이 챗GPT를 통해 얻은 내용을 스스로 윤문하여 공유하고, 상호 토론하면서, 교재에서 제시하는 주요 개념과 열린 문제의 대부분을 이해하도록 하였다. ④ 학기 말에는 그간 본인이 얻은 열린 문제들에 대한 학습기록을 모아 PBL (Problem-Based Learning) 보고서로 제출하고, 발표하여 강좌를 수료하도록 하였다. 이러한 방식은 학생들이 학습을 포기하지 않고 한 단계 앞으로 더 나아갈 추진력과 동기를 주며, 궁극적으로 각각의 문제를 스스로 해결하는 자기 주도적 학습을 도울 수 있다. 또한 학생들 각자의 수준에 맞추어 실시간으로 최적화된 조언을 제시하므로 강좌뿐만 아니라 대학수학교육 전반에 대한 학생별 맞춤형 교육(personalized education)을 제공할 수 있다. 즉, 학생들이 담당교수(또는 조교)와 AI 조교의 도움으로 실시간 답변과 효과적인 조언을 받을 수 있게 됨을 의미한다. 이는 양질의 조교 부족에 대한 고민을 추가 비용 없이 획기적으로 해결할 수 있다. 본 연구는 강좌의 교수·학습과정에 교재 맞춤형 챗GPT를 접목한 것으로, 인공지능(AI) 기술을 기타 대학수학 과목들(미적분학, 선형대수학, 이산수학, 공학수학, 기초통계학 등)과 초·중·고 수학교육에 적용할 수 있는 새로운 방법을 제시한다. 특히 AI 기술을 적용하여 이전 수강생들의 학습기록(열린 문제 풀이, 토론 자료, 코드 등)을 참고하며, 각자 실습한 결과를 공유 및 상호 토론하여 문제를 해결하는 방식은, 다양한 전공의 학생들이 내용을 더 효과적으로 이해하고, 본인 전공 관련 문제 해결 능력을 향상시키는 데 획기적인 도움을 줄 것으로 예상된다. 또한 교재 맞춤형 챗GPT와 함께 자기주도적인 학습을 경험토록 하는 교수학습 방법은 평생 교육(lifelong learning, extension school, extension college, extended college) 또는 평생학습의 관점에서 중요하다.

심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류 (Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model)

  • 문갑수;김경섭;정윤재
    • 한국지리정보학회지
    • /
    • 제23권3호
    • /
    • pp.252-262
    • /
    • 2020
  • 원격탐사 분야에서 토지피복분류에는 머신러닝 기반의 SVM 모델이 대표적으로 활용되고 있는 한편, 신경망 모델을 이용한 연구도 지속적으로 수행되고 있다. 다목적실용위성의 고해상도 영상을 이용한 연구는 미흡한 실정이며, 따라서 본 연구에서는 고해상도 KOMPSAT-3 위성영상을 이용하여 신경망 모델의 토지피복분류 정확도를 평가하고자 하였다. 경주시 인근 해안지역의 위성영상을 취득하여 훈련자료를 제작하고, 물과 식생 및 육지의 세 항목에 대해 SVM, ANN 및 DNN 모델로 토지피복을 분류하였다. 분류 결과의 정확도를 오차 행렬을 통해 정량적으로 평가한 결과 DNN 모델을 활용한 토지피복분류가 92.0%의 정확도로 가장 우수한 결과를 나타냈다. 향후 다중 시기의 위성영상을 통해 훈련자료를 보완하고, 다양한 항목에 대한 분류를 수행 및 검증한다면 연구의 신뢰성을 높일 수 있을 것으로 판단된다.

연구개발 조직의 통합적 성과평가 체계에 관한 연구 (A Study on the Integrated Performance Measurement Framework for R&D Organization)

  • 이영찬;정민용;정선호
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.113-118
    • /
    • 2002
  • Research and Development(R&D) was once considered to be a unique, creative and unstructured process that was difficult, if not impossible, to manage and control. R&D decisions impact the entire enterprise. Therefore, decisions must not be based solely on R&D's perception of what is important or worthwhile. R&D contributions are difficult to measure separately from other functional organizations such as manufacturing and marketing. While some firms are attempting to overcome perceived limitations in traditional accounting-based performance measures using ROI, EVA, others are embracing the use of non-financial measures for decision making and performance evaluation. In particular, many firms are implementing 'Balanced Scorecard(BSC)' systems that supplement traditional accounting measures with non-financial measures focused on at least three other perspectives-customers, internal business processes, and learning and growth. AHP is a popular multi-attribute decision making model that allows for the development of importance rankings. The AHP has been applied in a wide variety of practical settings to model complex decision problems. The former, determine Perspectives and the Key Performance indicator(KPI) through the former research, the latter compose the questionnaire for determine the weight of perspectives and KPIs. And then, make a survey with researchers about 4 perspectives and 18 KPIs. The results will be simulate with Expert Choice 2000 for determine the weights. This results helps establish the firm's business strategy and technology strategy The firm should establish the business strategy to consider market position, business growth potential, and technological capabilities.

  • PDF

초등학교 수학 교과서에서의 용어 사용과 정의 방식에 관한 비판적 분석 : 몇 가지 예를 중심으로 (A Critical Analysis on Usage and Defining Methods of Terms in Elementary Mathematics Textbooks in Korea Centered on Some Examples)

  • 권석일;박교식
    • 한국초등수학교육학회지
    • /
    • 제15권2호
    • /
    • pp.301-316
    • /
    • 2011
  • 본 연구에서는 초등학교 수학 교과서에서의 용어 사용에서, 교육과정과 교과서 사이의 불일치, 용어의 이중적 사용, 용어 정의 방식의 비일관성에 관해 사례를 들어 논의하고 있다. 사례 분석의 결론으로 다음의 네 가지를 제안할 수 있다. 첫째, 교과서와 교육과정을 일치시켜야 한다. 둘째, 교과서에서 사용하는 용어의 의미를 명확히 규정해야 한다. 셋째, 같은 종류의 용어를 정의할 때는 일관성 있게 정의해야 한다. 넷째, 교과서 개발 시스템의 보완이 필요하다. 본 연구의 결과는 새로운 교과서의 개발 및 교육과정의 수정 보완, 그리고 더 나아가 새로운 교육과정의 개발에 도움을 줄 수 있을 것이다.

  • PDF

무리수 단원에 대한 교과서 분석 연구: 과정과 대상의 관점으로 (A textbook analysis of irrational numbers unit: focus on the view of process and object)

  • 오국환;박정숙;권오남
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제56권2호
    • /
    • pp.131-145
    • /
    • 2017
  • The representation of irrational numbers has a key role in the learning of irrational numbers. However, transparent and finite representation of irrational numbers does not exist in school mathematics context. Therefore, many students have difficulties in understanding irrational numbers as an 'Object'. For this reason, this research explored how mathematics textbooks affected to students' understanding of irrational numbers in the view of process and object. Specifically we analyzed eight textbooks based on current curriculum and used framework based on previous research. In order to supplement the result derived from textbook analysis, we conducted questionnaires on 42 middle school students. The questions in the questionnaires were related to the representation and calculation of irrational numbers. As a result of this study, we found that mathematics textbooks develop contents in order of process-object, and using 'non repeating decimal', 'numbers cannot be represented as a quotient', 'numbers with the radical sign', 'number line' representation for irrational numbers. Students usually used a representation of non-repeating decimal, although, they used a representation of numbers with the radical sign when they operate irrational numbers. Consequently, we found that mathematics textbooks affect students to understand irrational numbers as a non-repeating irrational numbers, but mathematics textbooks have a limitation to conduce understanding of irrational numbers as an object.

엑셀을 통한 일차함수의 활용에 대한 사례연구 (A Case Study on Application of Linear Function using Excel)

  • 이광상
    • 대한수학교육학회지:학교수학
    • /
    • 제10권1호
    • /
    • pp.1-22
    • /
    • 2008
  • 본 연구의 목적은 엑셀의 활용이 '일차함수의 그래프와 연립방정식의 해의 관계'를 이해하는 데 어떤 영향을 미치는가를 알아보는데 있다. 엑셀을 활용한 교수실험은 학습 능력 수준이 다른 다섯 명의 학생을 선정하여 중학교 2학년 8-가에서 다루고 있는 내용 중 일차함수의 활용을 중심으로 이루어졌다. 교수실험에서 각 학생들 스스로 규칙을 정해 식을 만들고 표와 그래프를 나타내면서 그 변화를 상당히 흥미롭게 탐구하였다. 또한 엑셀을 통해 식과 표와 그래프를 동시에 관찰하는 것에 익숙해졌고, 귀납적인 관찰을 통해 일반적인 규칙을 발견하는 성향을 보여주었다. 엑셀환경에서 다양한 식을 표와 그래프로 나타내고, 스핀버튼을 활용해 그래프를 역동적으로 변화시키면서 탐구하는 것은 디너스(Dienes)가 주장하는 '수학적 다양성의 원리'와 부합한다고 할 수 있다. 엑셀을 활용한 탐구환경은 학생들의 일차함수 개념의 형성을 촉진하는 역할을 수행함으로써 지필환경을 보완할 수 있다는 시사점을 도출하였다.

  • PDF

SVM을 이용한 침입방지시스템 오경보 최소화 기법 (False Alarm Minimization Technology using SVM in Intrusion Prevention System)

  • 김길한;이형우
    • 인터넷정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.119-132
    • /
    • 2006
  • 지금까지 잘 알려진 네트워크 기반 보안 기법들은 공격에 수동적이고 우회한 공격이 가능하다는 취약점을 가지고 있어 인라인(in_line) 모드의 공격에 능동적 대응이 가능한 오용탐지 기반의 침입방지시스템의 출현이 불가피하다. 하지만 오용탐지 기반의 침입방지시스템은 탐지 규칙에 비례하여 과도한 오경보(False Alarm)를 발생시켜 정상적인 네트워크 흐름을 방해하는 잘못된 대응으로 이어질 수 있어 기존 침입탐지시스템보다 더 위험한 문제점을 갖고 있으며, 새로운 변형 공격에 대한 탐지가 미흡하다는 단점이 있다. 본 논문에서는 이러한 문제를 보완하기 위해 오용탐지 기반의 침입방지시스템과 Anomaly System 중의 하나인 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입방지시스템 기술을 제안한다. 침입 방지시스템의 탐지 패턴을 SVM을 이용하여 진성경보만을 처리하는 기법으로 실험결과 기존 침입방지시스템과 비교하여, 약 20% 개선된 성능결과를 보였으며, 제안한 침입방지시스템 기법을 통하여 오탐지를 최소화하고 새로운 변종 공격에 대해서도 효과적으로 탐지 가능함을 보였다.

  • PDF

전력데이터 패턴 추출의 효율성 향상을 위한 변형된 K-means 기반의 분석 프로세스 (Analysis Process based on Modify K-means for Efficiency Improvement of Electric Power Data Pattern Detection)

  • 정세훈;신창선;조용윤;박장우;박명혜;김영현;이승배;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제20권12호
    • /
    • pp.1960-1969
    • /
    • 2017
  • There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.