• Title/Summary/Keyword: Supervised prediction

검색결과 129건 처리시간 0.031초

Self-Supervised Rigid Registration for Small Images

  • Ma, Ruoxin;Zhao, Shengjie;Cheng, Samuel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.180-194
    • /
    • 2021
  • For small image registration, feature-based approaches are likely to fail as feature detectors cannot detect enough feature points from low-resolution images. The classic FFT approach's prediction accuracy is high, but the registration time can be relatively long, about several seconds to register one image pair. To achieve real-time and high-precision rigid registration for small images, we apply deep neural networks for supervised rigid transformation prediction, which directly predicts the transformation parameters. We train deep registration models with rigidly transformed CIFAR-10 images and STL-10 images, and evaluate the generalization ability of deep registration models with transformed CIFAR-10 images, STL-10 images, and randomly generated images. Experimental results show that the deep registration models we propose can achieve comparable accuracy to the classic FFT approach for small CIFAR-10 images (32×32) and our LSTM registration model takes less than 1ms to register one pair of images. For moderate size STL-10 images (96×96), FFT significantly outperforms deep registration models in terms of accuracy but is also considerably slower. Our results suggest that deep registration models have competitive advantages over conventional approaches, at least for small images.

Interpretation of Data Mining Prediction Model Using Decision Tree

  • Kang, Hyuncheol;Han, Sang-Tae;Choi, Jong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.937-943
    • /
    • 2000
  • Data mining usually deal with undesigned massive data containing many variables for which their characteristics and association rules are unknown, therefore it is actually not easy to interpret the results of analysis. In this paper, it is shown that decision tree can be very useful in interpreting data mining prediction model using two real examples.

  • PDF

오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법 (A Hybrid Data Mining Technique Using Error Pattern Modeling)

  • 허준;김종우
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

준지도 학습 기반 선박충돌 예측에 대한 연구 (A Study on the Prediction of Ship Collision Based on Semi-Supervised Learning)

  • 석호준;심승;우정훈;조준래;조득재;백종화;정재룡
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.204-205
    • /
    • 2023
  • 본 연구는 준지도학습(SSL)을 기반한 소형 어선의 충돌 경보 송출 예측 모델에 관한 연구이다. 지도학습(SL) 방법은 레이블링된 다수의 데이터가 필요하지만 레이블링 과정에서 많은 자원과 시간이 소요된다. 본 연구는 '지능형 해상교통정보 서비스'와 연계한 데이터 파이프 라인을 통해 수집된 서비스 데이터와 실해역 시험에서 수집한 데이터를 사용하였다. 실제 사용자 만족도 기반으로 레이블이 결정된 실해역 시험 데이터만 아니라 레이블이 결정되지 않은 서비스 데이터를 함께 학습시킨 결과, 모델 정확도가 향상되었다.

  • PDF

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

비분류표시 데이터의 초기예측을 통한 제약기반 부분-지도 군집분석 (A Constraint-based Semi-supervised Clustering Through Initial Prediction of Unlabeled Data)

  • 김응구;전치혁
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.383-387
    • /
    • 2007
  • Traditional clustering is regarded as an unsupervised teaming to analyze unlabeled data. Semi-supervised clustering uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance. Previous methods use constraints generated from available labeled data in clustering process. We propose a new constraint-based semi-supervised clustering method by reflecting initial predicted labels of unlabeled data. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

  • PDF

시추효율매개변수를 이용한 굴진율 예측 지도학습 모델 비교 연구 (Comparative Study of the Supervised Learning Model for Rate of Penetration Prediction Using Drilling Efficiency Parameters)

  • 한동권;성유정;양윤정;권순일
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1032-1038
    • /
    • 2021
  • 굴진율은 시추작업에서 효율성을 극대화하기 위한 중요한 변수 중 하나이다. 시추효율을 극대화하기 위해서는 시추속도를 향상시키는 것이 필요한데 시추 엔지니어에게 시추 중 문제를 확인할 수 있는 실시간 굴진율 예측이 중요하다. 굴진율은 시추스트링 회전속도, 비트하중, 시추이수 유량과 높은 상관성을 가지고 있다. 이 논문에서는 시추효율매개변수 자료를 통해 학습한 데이터기반 지도학습 모델을 이용하여 굴진율을 예측하였다. 회귀모델의 성능 평가 지표를 통해 비교한 결과 RF 모델의 RMSE가 4.20, MAPE는 9.08%로 예측성능이 가장 우수한 것으로 확인되었다. 제안한 방법은 실시간 시추운전가이드 시스템 구축 시 굴진율 예측 기반 모델로 활용될 수 있다.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류 (Image generation and classification using GAN-based Semi Supervised Learning)

  • 정도윤;최광미;김남호
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.27-35
    • /
    • 2024
  • 본 연구는 GAN(Generative Adversarial Network)을 기반으로 한 Semi Supervised Learning을 활용하여 이미지 생성과 ResNet50을 이용한 이미지 분류를 결합하는 방법에 대해 다루고 있다. 이를 통해 새로운 접근법을 제시하여 이미지 생성과 분류를 통합함으로써 더 정확하고 다양한 결과를 얻을 수 있도록 하였다. 생성자와 판별자를 학습시켜 생성된 이미지와 실제 이미지를 구별하고, ResNet50을 활용하여 이미지 분류를 수행한다. 실험 결과에서는 생성된 이미지의 품질이 epoch에 따라 변화함을 확인할 수 있었으며, 이를 통해 산업재해 예측 정확성을 향상하고자 한다. 또한, GAN과 ResNet50의 결합을 통해 이미지 생성의 품질을 향상시키고 이미지 분류의 정확도를 높이는 효율적인 방법을 제시하고자 한다.