• Title/Summary/Keyword: Supervised learning methods

Search Result 202, Processing Time 0.021 seconds

Supervised Rank Normalization with Training Sample Selection (학습 샘플 선택을 이용한 교사 랭크 정규화)

  • Heo, Gyeongyong;Choi, Hun;Youn, Joo-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • Feature normalization as a pre-processing step has been widely used to reduce the effect of different scale in each feature dimension and error rate in classification. Most of the existing normalization methods, however, do not use the class labels of data points and, as a result, do not guarantee the optimality of normalization in classification aspect. A supervised rank normalization method, combination of rank normalization and supervised learning technique, was proposed and demonstrated better result than others. In this paper, another technique, training sample selection, is introduced in supervised feature normalization to reduce classification error more. Training sample selection is a common technique for increasing classification accuracy by removing noisy samples and can be applied in supervised normalization method. Two sample selection measures based on the classes of neighboring samples and the distance to neighboring samples were proposed and both of them showed better results than previous supervised rank normalization method.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Stock Price Prediction Based on Time Series Network (시계열 네트워크에 기반한 주가예측)

  • Park, Kang-Hee;Shin, Hyun-Jung
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • Time series analysis methods have been traditionally used in stock price prediction. However, most of the existing methods represent some methodological limitations in reflecting influence from external factors that affect the fluctuation of stock prices, such as oil prices, exchange rates, money interest rates, and the stock price indexes of other countries. To overcome the limitations, we propose a network based method incorporating the relations between the individual company stock prices and the external factors by using a graph-based semi-supervised learning algorithm. For verifying the significance of the proposed method, it was applied to the prediction problems of company stock prices listed in the KOSPI from January 2007 to August 2008.

A Study on Automatic Classification of Record Text Using Machine Learning (기계학습을 이용한 기록 텍스트 자동분류 사례 연구)

  • Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.321-344
    • /
    • 2017
  • Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

A Dynamic Channel Assignment Method in Cellular Networks Using Reinforcement learning Method that Combines Supervised Knowledge (감독 지식을 융합하는 강화 학습 기법을 사용하는 셀룰러 네트워크에서 동적 채널 할당 기법)

  • Kim, Sung-Wan;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.502-506
    • /
    • 2008
  • The recently proposed "Potential-based" reinforcement learning (RL) method made it possible to combine multiple learnings and expert advices as supervised knowledge within an RL framework. The effectiveness of the approach has been established by a theoretical convergence guarantee to an optimal policy. In this paper, the potential-based RL method is applied to a dynamic channel assignment (DCA) problem in a cellular networks. It is empirically shown that the potential-based RL assigns channels more efficiently than fixed channel assignment, Maxavail, and Q-learning-based DCA, and it converges to an optimal policy more rapidly than other RL algorithms, SARSA(0) and PRQ-learning.

Classification of Korean Ancient Glass Pieces by Pattern Recognition Method (패턴인지법에 의한 한국산 고대 유리제품의 분류)

  • Lee Chul;Czae Myung-Zoon;Kim Seungwon;Kang Hyung Tae;Lee Jong Du
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.113-124
    • /
    • 1992
  • The pattern recognition methods of chemometrics have been applied to multivariate data, for which ninety four Korean ancient glass pieces have been determined for 12 elements by neutron activation analysis. For the purpose, principal component analysis and non-linear mapping have been used as the unsupervised learning methods. As the result, the glass samples have been classified into 6 classes. The SIMCA (statistical isolinear multiple component analysis), adopted as a supervised learning method, has been applied to the 6 training set and the test set. The results of the 6 training set were in accord with the results by principal component analysis and non-linear mapping. For test set, 17 of 33 samples were each allocated to one of the 6 training set.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

Graph Construction Based on Fast Low-Rank Representation in Graph-Based Semi-Supervised Learning (그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축)

  • Oh, Byonghwa;Yang, Jihoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Low-Rank Representation (LRR) based methods are widely used in many practical applications, such as face clustering and object detection, because they can guarantee high prediction accuracy when used to constructing graphs in graph - based semi-supervised learning. However, in order to solve the LRR problem, it is necessary to perform singular value decomposition on the square matrix of the number of data points for each iteration of the algorithm; hence the calculation is inefficient. To solve this problem, we propose an improved and faster LRR method based on the recently published Fast LRR (FaLRR) and suggests ways to introduce and optimize additional constraints on the underlying optimization goals in order to address the fact that the FaLRR is fast but actually poor in classification problems. Our experiments confirm that the proposed method finds a better solution than LRR does. We also propose Fast MLRR (FaMLRR), which shows better results when the goal of minimizing is added.